

Machine learning for water monitoring, hydrology and sustainability Kevin Swersky

Joint work with Touraj Farahmand, Nando de Freitas, Michael Osborne, Roman Garnett, Ryan Turner and others

Outline

- Why is water monitoring important?
- How is it done?
- How can machine learning help?
- What have we done so far?

The water industry

- Fresh water is a limited resource
- Estimates of Canadian economic impact range from \$7.3B-\$23B
- Industries directly tied to water include:
 - Agriculture
 - Mining
 - Forestry
 - Hydro power
 - Waste management
- Essential to the health and well-being of both people and the environment

Effects of climate

- Changing climates are creating water shortages and changing flood patterns
- Extreme weather is becoming the new norm
 - Urban supplies are under stress
- From 1994 to 1999 26% of Canadian municipalities reported water shortages due to increased consumption, drought, or infrastructure problems

Water Monitoring

- It is rare to find one level of government with sole jurisdiction over water monitoring. Typically shared by many levels.
- Data is needed for:
 - Allocation, engineering design, prediction and forecasting, environmental impact assessments, transportation, fisheries and ecosystems management, resource extraction, industrial use, recreation
- Monitoring is needed because water is not distributed evenly in space and time
 - Understanding its distribution can lead to solutions when water is temporarily unavailable

The linkage between water and the economy is so compelling that decisions about water are rarely deferred. Decisions that are uninformed almost always have unintended consequences, with impacts on the environment, health, and society.

Water monitoring in North America

- > 2400 stream gage stations
- > 28 regional offices
- > 200+ end users

 > 7500 stream gage stations
> 500+ staff using AQUARIUS Rating Curve (GRSAT)

Aquatic Informatics

- Vancouver based software development company
- 200+ customers in North America, Australia, Asia and Europe
 - Federal/State/Municipal Government Agencies
 - Engineering Consultants / Hydropower
 - Any organization responsible for managing water

Aquarius

Aquatic Informatics

Provides Customer Support, Customer Service, Training and Product Development

AQUARIUS

- Is software for hydrologists and water resource managers
- Is the *de facto* standard in North America for hydrometric Time Series data management and Rating Curve development.

Data acquisition and management

Data processing pipeline

How can machine learning help?

Machine learning can automate, simplify and improve many aspects of water monitoring including:

- 1) Improving modeling and analysis
- 2) Detecting and correcting equipment malfunctions
- 3) Detecting environmental anomalies
- 4) Predicting the effects of policy decisions
- 5) Automating and controlling allocation and distribution

AQUATIC

Common water quality indicators

For each signal: 1 point every ~5-15 minutes = 30,000-100,000 points per year per signal

Challenges

Environmental time series in general are complex and hard to model

Problems:

- Highly non-stationary
- Highly non-linear
- Many changes in dynamics
- Can contain outliers, anomalies, gaps, etc.

Our models need to be:

- General
- Flexible
- Robust
- Interpretable
- Fast and efficient for real-time applications
- Easy to setup and use

Our first approach is develop good probabilistic models for several basic problems

- Gap filling/forecasting
- Fault detection
- Anomaly/outlier detection

Probabilistic models provide many beneficial properties that are important in an industrial setting

- Consistent, unified framework
- Provides uncertainty in results
- Suggests natural extensions to deal with many kinds of issues

Univariate models

We use Gaussian processes to model univariate series

- Flexible, easy to use, tunable parameters are intuitive (choosing kernels)
- Sparse Gaussian processes can help with speed (Snelson 2006, Titsias 2009)
- Issues: heteroscedasticity, nonstationarity, spike noise, changepoints

The power of redundancy

We can exploit correlated signals to build more robust models. Even simple linear methods work well under this regime.

Nonlinearly correlated signals from same sensor

Linearly correlated signals from different sensors

The power of redundancy

ile View Charting Help								
🛱 🚔 🔌 🖉 🔚 🖼 🕅 🖤 🔶	🌆 🔁 📑 🔁 🖼	- 🔚 - 🏴 - 📮 🔍 (💐 🔍 🔍 Last 30	Days	- 🔁 📮	🗟 🛦 🔏 🍦		
Multivariate	model for turbidity	filling using cond	luctance and st	age		id View		•
1400 — Turbidity Test data with g — Turbidity Original Data 1300 — Turbidity Predicted Data - Turbidity Confidence	ap					D VVVV-MM-DD	Test_da Raw Turbidit	Interp. Type
1200 Turbidity Confidence					10	73 2010-05-12 05	20.000	1 - Inst
1100					10	74 2010-05-12 05	20.000	1 - Inst
					10	75 2010-05-12 06	20.000	1 - Inst
1000					10	76 2010-05-12 06	26.000	1 - Inst
900					10	77 2010-05-12 06	34.000	1 - Inst
300					10	78 2010-05-12 06	34.000	1 - Inst
800					10	79 2010-05-12 07	36.000	1 - Inst
					10	80 2010-05-12 07	39.000	1 - Inst
700					10	81 2010-05-12 07	38.000	1 - Inst
600					10	82 2010-05-12 07	39.000	1 - Inst
					10	83 2010-05-12 08	37.000	1 - Inst
500					10	84 2010-05-12 08	36.000	1 - Inst
400					10	85 2010-05-12 08	33.000	1 - Inst
					10	86 2010-05-12 08	31.000	1 - Inst
300			f		10	87 2010-05-12 09	30.000	1 - Inst
	1 1		[10	88 2010-05-12 09	27.000	1 - Inst
200					10	89 2010-05-12 09	25.000	1 - Inst
100			_		10	90 2010-05-12 09	23.000	1 - Inst
	Land Laborer	William and and		and the second second	10	91 2010-05-12 10	24.000	1 - Inst
0	*14 16 100 1006 1				10	92 2010-05-12 10	22.000	1 - Inst
Mar: 42 2040	45 48					93 2010-05-12 10	23.000	1 - Inst
May 13 2010 14	15 16	17 18 UTC-08:00	19 20	21	22 10	94 2010-05-12 10	24.000	1 - Inst

The power of redundancy

Handling sensor faults

- The Gaussian distribution is closed under affine transformations
- We make the assumption that a fault can be represented as an affine transformation of the observation
- We can model a variety of faults by modelling the observations y with time input t as (Garnett 2009):

$$P(y|t) = N(y|A\mu(t) + b(t), \Sigma_m + \Sigma_n)$$

- Where $\mu(t)$ is the model prediction, Σ_m is measurement noise.
- *A*, *b* specify the contribution of the fault, A is a diagonal matrix
- Σ_n is the noise contribution from the fault

Sensor offset

For example, a sensor that undergoes a constant offset c in a faulty region *F*:

- $A(i_t, i_t) = 1$
- $b(t) = \begin{cases} c & \text{if } t \in F \\ 0 & \text{else} \end{cases}$ $\Sigma_n = 0$

Stuck sensor

A stuck sensor that outputs some constant reading *c* plus noise:

• $A(i_t, i_t) = \begin{cases} 0 & \text{if } t \in F \\ 1 & \text{else} \end{cases}$ • $b(t) = \begin{cases} c & \text{if } t \in F \\ 0 & \text{else} \end{cases}$ • $\Sigma_n(i_t, i_t) = \sigma_n^2$

Sensor drift

- Dealing with sensor drift is much harder!
- Drifts are often nonlinear due to sensor design
- In univariate signals, it is often difficult to even "eyeball" sensor drifts
 - Sensors are usually recalibrated every few weeks before drift becomes too severe
- Either we need to develop really good univariate drift models, or utilize sensor networks

Case study: fishkiller

This is a time-series for a river in British Columbia measuring water level in meters

- Water level is determined by a nearby dam upstream
- When "jitters" occur, salmon get trapped and drown
- Detecting and preventing these events will save thousands of fish

Dealing with anomalies: the fault bucket (Osborne 2011)

- Model faults as being a Gaussian with large variance
 - Each point can be faulty or not faulty
 - 2ⁿ ways of classifying every point
- We make several approximations to get the posterior probability of faultiness for a current point
 - The 2^{n-1} posterior probability of past faults can be approximated by a single Gaussian
 - The present faultiness is independent of past faultiness

The supervised approach (Turner 2011)

Supervised extension to Bayesian Online Changepoint Detection (Turner 2010) algorithm.

- BOCPD trains a predictive distribution using data since the last changepoint which is a latent variable
- > The supervised extension trains the conditional over run lengths directly

Future Work

- Need <u>fast</u> nonlinear regression models for nonstationary data with multiple correlated outputs and side information that don't require much hand-tuning
- Consider supervised approaches for modelling sensor failures and anomalies
- How do we elegantly combine these models into a cohesive system?
- Long term work: lots of problems in e.g. time-series classification/motif detection, optimal control, multitask learning, etc.
- Really long term work: models to predict spatiotemporal changes for different decisions, models for automated control systems
- Will likely need to combine machine learning models with physical models

For more information:

Touraj Farahmand: tourajf@aquaticinformatics.com

Kevin Swersky: <u>kswersky@cs.toronto.edu</u>

Nando de Freitas: nando@cs.ubc.ca

Thank you!

