AQQATIC
INFORMATICS™

Machine learning for water monitoring,

hydrology and sustainability
Kevin Swersky

2.

Joint work with Touraj Farahmand, Nando de Freitas, Michael ‘
. Osborne, Roman Garnett, Ryan Turner and others I‘



AQUATIC Outline

Why is water monitoring important?
How is it done?

How can machine learning help?
What have we done so far?



ﬁ%{ﬁ?}ﬁ The water industry

Fresh water is a limited resource

Estimates of Canadian economic impact range
from $7.3B-523B

Industries directly tied to water include:
o Agriculture

» Mining

o Forestry

» Hydro power

» Waste management

Essential to the health and well-being of both
people and the environment



AQUATIC Effects of climate
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Changing climates are creating water
shortages and changing flood patterns

Extreme weather is becoming the new norm
» Urban supplies are under stress

From 1994 to 1999 26% of Canadian
municipalities reported water shortages due

to increased consumption, drought, or
infrastructure problems
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AQUATIC Water Monitoring

It is rare to find one level of government with sole
jurisdiction over water monitoring. Typically shared by
many levels.

Data is needed for:

» Allocation, engineering design, prediction and forecasting,
environmental impact assessments, transportation,
fisheries and ecosystems management, resource
extraction, industrial use, recreation

Monitoring is needed because water is not distributed
evenly in space and time

» Understanding its distribution can lead to solutions when
water is temporarily unavailable
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The linkage between water and the economy is so compelling that decisions

about water are rarely deferred. Decisions that are uninformed almost

always have unintended consequences, with impacts on the environment,
health, and society.
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Water monitoring in North America
qurvey /
s Survey of Canada

2400 stream gage stations
28 regional offices
200+ end users

b
éUSGS US Geological Survey

7500 stream gage stations

500+ staff using AQUARIUS Rating
Curve (GRSAT)

National Streamgaging Network
Locations using AQUARIUS (~11,000)
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AQUATIC Aquatic Informatics
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Vancouver based software development company

200+ customers in North America, Australia, Asia and
Europe

Federal/State/Municipal Government Agencies
Engineering Consultants / Hydropower
Any organization responsible for managing water



ﬁ?&{ﬁ?}ﬁ Aquarius

Aquatic Informatics
Provides Customer Support, Customer Service, Training and Product Development

AQUARIUS

Is software for hydrologists and water resource managers

Is the de facto standard in North America for hydrometric Time Series data
management and Rating Curve development.
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Data acquisition and management
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AQUATIC How can machine learning help?
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Machine learning can automate, simplify and improve
many aspects of water monitoring including:

1) Improving modeling and analysis

2) Detecting and correcting equipment malfunctions

3) Detecting environmental anomalies

4) Predicting the effects of policy decisions

5) Automating and controlling allocation and distribution



anz) AQUATIC Common water quality indicators
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For each signal: 1 point every ~5-15 minutes
= 30,000-100,000 points per year per signal

Dissolved Oxygen




ﬁ(%%ﬁ\llg Challenges

Environmental time series in general
are complex and hard to model

02 (Dis ) Telemetry

Problems: 2 [woz e} roomar

Highly non-stationary

Highly non-linear

Many changes in dynamics

Can contain outliers, anomalies, gaps, etc.

Our models need to be:

General ,
Flexible ‘ F
Robust

Aug Sep
UTC-06:00

Interpretable
Fast and efficient for real-time applications
Easy to setup and use
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Our first approach is develop good probabilistic models
for several basic problems

Gap filling/forecasting
Fault detection
Anomaly/outlier detection

Probabilistic models provide many beneficial properties

that are important in an industrial setting
Consistent, unified framework
Provides uncertainty in results
Suggests natural extensions to deal with many kinds of issues
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We use Gaussian processes
to model univariate series

Flexible, easy to use, tunable
parameters are intuitive

(choosing kernels)

Sparse Gaussian processes

can help with speed
(Snelson 2006,

Titsias 2009)

Issues: heteroscedasticity,

nonstationarity, spike noise,
changepoints

Univariate models
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AQUATIC The power of redundancy

We can exploit correlated signals to build more robust models. Even simple linear
methods work well under this regime.
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Iy The power of redundancy
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The power of redundancy
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ﬁ?{%ﬁﬂg Handling sensor faults

The Gaussian distribution is closed under affine
transformations

We make the assumption that a fault can be represented as
an affine transformation of the observation

We can model a variety of faults by modelling the
observations y with time input t as (Garnett 2009):

P(ylt) = N(y|Au(t) + b(t), Z;y + Zp)

» Where u(t) is the model prediction, X, is measurement noise.
» A, b specify the contribution of the fault, A is a diagonal matrix
o X, isthe noise contribution from the fault



AQUATIC Sensor offset
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For example, a sensor that undergoes a constant offset ¢ in a faulty
region F:
o A(i i) =1

_(c ifteF
’ b(t)_{o else
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Stuck sensor

A stuck sensor that outputs some constant reading ¢ plus noise:
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ﬁ(%%ﬁgllg Sensor drift

Dealing with sensor drift is
much harder!

Drifts are often nonlinear due

02 (Dis ) Telemetry

to sensor design oy

In univariate signals, it is often
difficult to even “eyeball”
sensor drifts
» Sensors are usually . I
recalibrated every few weeks I ‘,

before drift becomes too
severe

Either we need to develop |
really good univariate drift “ al
models, or utilize sensor

networks
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This is a time-series for a river in British Columbia measuring water level in
meters

Case study: fishkiller

Water level is determined by a nearby dam upstream
When “jitters” occur, salmon get trapped and drown

Detecting and preventing these events will save thousands of fish
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ﬁ%%ﬂg Dealing with anomalies: the fault
bucket (Osborne 2011)

Model faults as being a Gaussian with large variance

« Each point can be faulty or not faulty

« 2™ ways of classifying every point
We make several approximations to get the posterior probability of faultiness for a
current point

» The 2™ 1 posterior probability of past faults can be approximated by a single Gaussian

« The present faultiness is independent of past faultiness

1.5 - water level (m)

+ detected faults

time (s)



ﬁ%ﬁﬂg The supervised approach (Turner
2011)

Supervised extension to Bayesian Online Changepoint Detection
(Turner 2010) algorithm.

BOCPD trains a predictive distribution using data since the last
changepoint which is a latent variable

The supervised extension trains the conditional over run lengths directly
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ﬁ%ﬁ?}g Future Work

Need fast nonlinear regression models for nonstationary data with
multiple correlated outputs and side information that don’t require
much hand-tuning

Consider supervised approaches for modelling sensor failures and
anomalies

How do we elegantly combine these models into a cohesive
system?

Long term work: lots of problems in e.g. time-series
classification/motif detection, optimal control, multitask learning,
etc.

Really long term work: models to predict spatiotemporal changes
for different decisions, models for automated control systems

Will likely need to combine machine learning models with physical
models
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For more information:

Touraj Farahmand: tourajf@aquaticinformatics.com

Kevin Swersky: kswersky@cs.toronto.edu

Nando de Freitas: nando@cs.ubc.ca
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Thank youl!

. www.aquaticinformatics.com




