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How can machine learning help? 

What have we done so far? 



The water industry 

Fresh water is a limited resource 
Estimates of Canadian economic impact range 
from $7.3B-$23B 
Industries directly tied to water include: 

Agriculture 
Mining 
Forestry 
Hydro power 
Waste management 

Essential to the health and well-being of both 
people and the environment 



Effects of climate 

Changing climates are creating water 
shortages and changing flood patterns 

Extreme weather is becoming the new norm 

Urban supplies are under stress 

From 1994 to 1999 26% of Canadian  
municipalities reported water shortages due 
to increased consumption, drought, or 
infrastructure problems 



Water Monitoring 

It is rare to find one level of government with sole 
jurisdiction over water monitoring. Typically shared by 
many levels. 

Data is needed for: 
Allocation, engineering design, prediction and forecasting, 
environmental impact assessments, transportation, 
fisheries and ecosystems management, resource 
extraction, industrial use, recreation 

Monitoring is needed because water is not distributed 
evenly in space and time 

Understanding its distribution can lead to solutions when 
water is temporarily unavailable 

 



The linkage between water  and the economy is so compelling that decisions 

about water are rarely deferred. Decisions that are uninformed  almost 
always have unintended consequences, with impacts on the environment, 
health, and society. 



Water Survey of Canada                                                            

 

 2400 stream gage stations 

 28 regional offices  

 200+ end users   
 

                 US Geological Survey 
  

 7500 stream gage stations 

 500+ staff using AQUARIUS Rating 
Curve (GRSAT) 

National Streamgaging Network 
Locations using AQUARIUS (~11,000) 
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Water monitoring in North America 



Vancouver based software development company 

200+ customers in North America, Australia, Asia and 
Europe 

Federal/State/Municipal Government Agencies 

Engineering Consultants / Hydropower 

Any organization responsible for managing water 

 

Aquatic Informatics 



Aquarius 

Aquatic Informatics 
Provides Customer Support, Customer Service, Training and Product Development 

 
AQUARIUS 

Is software for hydrologists and water resource managers  
Is the de facto standard in North America for hydrometric Time Series data 
management and Rating Curve development. 



Data acquisition and management 
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Data processing pipeline 



How can machine learning help? 

Machine learning can automate, simplify and improve 
many aspects of water monitoring including: 

1) Improving modeling and analysis 

2) Detecting and correcting equipment malfunctions 

3) Detecting environmental anomalies 

4) Predicting the effects of policy decisions 

5) Automating and controlling allocation and distribution 



Common water quality indicators 

For each signal: 1 point every ~5-15 minutes 
= 30,000-100,000 points per year per signal  



Challenges 

Environmental time series in general 
are complex and hard to model 
 
Problems: 
 

  Highly non-stationary 
  Highly non-linear 
  Many changes in dynamics 
  Can contain outliers, anomalies, gaps, etc. 

 
Our models need to be: 
 

  General 
  Flexible 
  Robust 
  Interpretable 
  Fast and efficient for real-time applications 
  Easy to setup and use 



Our first approach is develop good probabilistic models 
for several basic problems 

Gap filling/forecasting 

Fault detection 

Anomaly/outlier detection 

 

Probabilistic models provide many beneficial properties 

that are important in an industrial setting  
Consistent, unified framework 

Provides uncertainty in results 

Suggests natural extensions to deal with many kinds of issues 
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Univariate models 

We use Gaussian processes 
to model univariate series 

Flexible, easy to use, tunable 
parameters are intuitive 
(choosing kernels) 
Sparse Gaussian processes 
can help with speed 
(Snelson 2006,  
Titsias 2009) 
Issues: heteroscedasticity, 
nonstationarity, spike noise, 
changepoints 

http://www.aquaticinformatics.com/
http://www.aquaticinformatics.com/


The power of redundancy 

We can exploit correlated signals to build more robust models. Even simple linear 
methods work well under this regime. 

Nonlinearly correlated 
signals from same sensor 

Linearly correlated 
signals from different 
sensors 



The power of redundancy 



The power of redundancy 



Handling sensor faults 

The Gaussian distribution is closed under affine 
transformations 
We make the assumption that a fault can be represented as 
an affine transformation of the observation 
We can model a variety of faults by modelling the 
observations 𝑦 with time input 𝑡 as (Garnett 2009): 
 

𝑃 𝑦 𝑡 = 𝑁(𝑦|𝐴𝜇 𝑡 + 𝑏 𝑡 , Σ𝑚 + Σ𝑛) 
 
Where 𝜇(𝑡) is the model prediction, Σm is measurement noise.   
𝐴, 𝑏 specify the contribution of the fault, A is a diagonal matrix 
Σ𝑛 is the noise contribution from the fault 
 



Sensor offset 

For example, a sensor that undergoes a constant offset 𝑐 in a faulty 
region 𝐹: 

𝐴 𝑖𝑡 , 𝑖𝑡 = 1 

𝑏 𝑡 =  
𝑐
0
 
     if 𝑡 ∈ 𝐹

else
 

Σn = 0 



Stuck sensor 

A stuck sensor that outputs some constant reading 𝑐 plus noise: 

𝐴 𝑖𝑡 , 𝑖𝑡 =  
0
1
 
     if 𝑡 ∈ 𝐹

else
 

𝑏 𝑡 =  
𝑐
0
 
     if 𝑡 ∈ 𝐹

else
 

Σ𝑛 𝑖𝑡 , 𝑖𝑡 = 𝜎𝑛
2

 



Sensor drift 

Dealing with sensor drift is 
much harder! 
Drifts are often nonlinear due 
to sensor design 
In univariate signals, it is often 
difficult to even “eyeball” 
sensor drifts 

Sensors are usually 
recalibrated every few  weeks 
before drift becomes too 
severe 

Either we need to develop 
really good univariate drift 
models, or utilize sensor 
networks 



Case study: fishkiller 

This is a time-series for a river in British Columbia measuring water level in 
meters 

Water level is determined by a nearby dam upstream 
When “jitters” occur, salmon get trapped and drown 
Detecting and preventing these events will save thousands of fish 



Dealing with anomalies: the fault 
bucket (Osborne 2011) 

Model faults as being a Gaussian with large variance 
Each point can be faulty or not faulty 
2𝑛 ways of classifying every point 

We make several approximations to get the posterior probability of faultiness for a 
current point 

The 2𝑛−1 posterior probability of past faults can be approximated by a single Gaussian 
The present faultiness is independent of past faultiness 
 



The supervised approach (Turner 
2011) 

Supervised extension to Bayesian Online Changepoint Detection 
(Turner 2010) algorithm. 

BOCPD trains a predictive distribution using data since the last 
changepoint which is a latent variable 

The supervised extension trains the conditional over run lengths directly 

 



Future Work 

Need fast nonlinear regression models for nonstationary data with 
multiple correlated outputs and side information that don’t require 
much hand-tuning 
Consider supervised approaches for modelling sensor failures and 
anomalies 
How do we elegantly combine these models into a cohesive 
system? 
Long term work: lots of problems in e.g. time-series 
classification/motif detection, optimal control, multitask learning, 
etc. 
Really long term work: models to predict spatiotemporal changes 
for different decisions, models for automated control systems 
Will likely need to combine machine learning models with physical 
models 
 
 
 
 
 
 



For more information: 

Touraj Farahmand: tourajf@aquaticinformatics.com 

Kevin Swersky: kswersky@cs.toronto.edu 

Nando de Freitas: nando@cs.ubc.ca  
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Thank you! 
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