
Computer Science B63 May 29, 2008
Scarborough Campus University of Toronto

Solutions for Homework Assignment #1

Answer to Question 1. (12 marks)

a. (4 marks) Let T (n) be the worst-case running time of the given HeapSort algorithm on an array
of n elements. To prove an upper bound on the growth rate of T (n), we argue that T (n) cannot be more
than c · n log n for some positive constant c.

Since A contains n elements, the BuildMaxHeap call on line 2 takes at most O(n) time (we proved
this result in class). Since the heap H never contains more than n elements (it has exactly n following
the BuildHeap, and the algorithm never inserts any additional elements into the heap), each ExtractMax
operation on line 4 takes at most O(log n) time (again, we saw this result in class). The for loop executes
at most n times (actually, exactly n times), so the total cost of the loop over all iterations is at most
O(n log n). The algorithm does only a constant amount of work on the remaining lines, thus the running
time for HeapSort is at most O(n + n log n) = O(n log n).

b. (8 marks) To prove a lower bound on the growth rate of T (n), we must demonstrate a “bad” input
that takes at least c ·n log n time for some positive constant c. If we can demonstrate one input that takes
at least this much time, then the worst-case must certainly be no less than this. Remember that we must
show such a “bad” input for every n (for big enough n, i.e., for n bigger than some bound).

The key for this question is to pick a “bad” order of input, and make some argument on how much
work (how many comparisons) must be performed during the algorithm. Let us consider the input I =
[n, n−1, . . . , 2, 1]. This order corresponds to a heap, so the heap built by BuildBinaryHeap won’t change
the order.

We observe the following fact: in a max-heap containing n elements, the largest m = dn2 e elements in
the heap form a subtree within the heap (in other words, the biggest elements form a connected portion of
the heap; this doesn’t have to be the upper triangle of the hear, or a subtree of a particular node, only that
the smaller elements can’t be between two of these m elements). Also, at least bm2 c of these elements must
be non-leaves of that subtree, since a binary tree with k leaves has at least k − 1 non-leaves. Therefore,
at least bm2 c of the largest m elements appear in the first bn2 c positions of the heap (they don’t have to
appear consecutively).

The key point is that those elements must each be promoted to the root position before reaching
their final destinations. When we do the first bn2 c ExtractMax operations, the root has to be the
largest remaining element, so the largest bn2c elements must be propagated up to the root position.
This includes the bm2 c non-leaf elements. (It is important that they are non-leaves, since during the first
bn2 c extracts leaves can jump to the root position and propagate down, but non-leaves must propagate

up.) The movement of these bm2 c elements propagating up to the root contributes at least
∑bm

2
c

k=1 log k =
1
2m log m + O(m)∈ Ω(m log m) = Ω(n log n).

[Credit was given for knowing how to approach this problem correctly, even if you were not able to get
all the details... as you can see, some of the details are a bit challenging to come up with and do correctly.]

Answer to Question 2. (15 marks)
The basic idea is to iteratively find the minimum element of all lists, return it as the next minimum element
and replace it with the next element in its list (and, of course, to use a heap for these operations!).
MergeLists(l1, l2, . . . , lk):

//Precondition: the lists l1, l2, . . . , lk are sorted in nondecreasing order

1: for each list lj , create a node xj containing the value of the first element of list lj , its list number j
and its index (in this case, 1). (Each node has three fields: value, listNum and listPos.)

2: create an array B of k nodes, with node xj stored in position j of B
3: H ← BuildMinHeap(B) {where Min-Heapify arranges nodes based on the value field}

1



4: create an array A of n elements for storing the sorted list

5: for i = 1 to n do
6: x← H.ExtractMin() {ExtractMin uses the value field to select the minimum}
7: A[i]← x.value
8: insert into H a node with the element at position x.listPos + 1 of list lx.listNum (along with its list

and index number), if such an element exists
9: end for

10: return A

Correctness: All the lists li are provided sorted in nondecreasing order (for simplicity, we’ll assume no
duplicate elements for now). Therefore, we know that initially the smallest element is in the first position
of some list. By inserting the elements at the front of each list into a heap and extracting the minimum,
we find the first element. Assume that the first element is in list j. Now, we have to find the second
smallest element. This element is either already in the heap (i.e., its the smallest element in some list
that is not j) or it is the second element in list lj . Thus, to find the second smallest element, we insert
the second element from list j into the heap, and extract the minimum. Inductively, we can show that
after extracting the ith largest element from the heap, the i + 1 largest element will either still be in the
heap or it will appear immediately following the ith largest element in a list. By recording the list number
and index number of each element in the heap, we can easily find the element that appears after the ith

largest element in a list. As a result, we can find and insert this new element into the heap (if it exists)
and repeat the process. After n iterations of the for loop, n elements will be extracted from the heap and
all elements will have been returned in order from smallest to largest. (If there are duplicate elements, it
doesn’t matter in which order we choose the identical elements, so the same argument holds.)

Worst-case running time: We consider each stage of the algorithm:
1. Creating all the nodes xj for each list lj takes O(k) time.

2. Building an array with the k nodes also takes O(k) time.

3. The worst-case running time of BuildMinHeap is in Θ(k).

4. Each of the ExtractMin and Insert operations have worst-case time complexity in O(log k), since
there are at most k elements in the heap H when these operations are performed.

5. The for loop is executed n times; thus, the ExtractMin and Insert operations operations are
performed at most n times.

Overall, the algorithm MergeLists has a worst-case running time in O(k + n log k), which simplifies to
O(n log k).

Answer to Question 3. (18 marks)

a. (6 marks) A binomial heap H with n vertices consists of α(n) trees. Let Ti, 1 ≤ i ≤ α(n), denote
the trees of H. A tree Ti with ni vertices has ni − 1 edges. So the total number of edges in H is∑i=α(n)

i=1 (ni − 1) = (
∑i=α(n)

i=1 ni)− α(n) = n− α(n)

b. (12 marks) Binomial heap H has n nodes before the insertions. By Part (a), it has n − α(n) edges
before the insertions. After k consecutive insertions, H has n+k nodes, hence it now has (n+k)−α(n+k)
edges. So the number of new edges created during the k consecutive insertions is:
[(n + k)− α(n + k)]− [n− α(n)] = k + α(n)− α(n + k) ≤ k + α(n) edges.

The number of pairwise comparisons between the elements of H needed to execute k consecutive
insertions is equal to the number of new edges created during these insertions (each new edge is the result
of a pairwise comparison, and each pairwise comparison creates a new edge in H). So k consecutive insertions
require at most k +α(n) comparisons. By definition α(n) is the number of 1’s in the binary representation
of n, therefore, α(n) ≤ blog2 nc+1. So k consecutive insertions require at most k+blog2 nc+1 comparisons.
Note that if k > log2 n, k is the dominant factor in k + blog2 nc + 1. So, when k > log2 n, k consecutive
insertions require just O(k) pairwise comparisons (a constant number of comparisons per insertion on the
average).

2


