CSC364 Summer 2002 — Homework 4

The following questions are assigned each week. None of these questions
are for hand in, though you are encouraged to try them all.

Week 12

1. [CLRS, Problem 34-2, page 1018]
Bonnie and Clyde have just robbed a bank. They have a bag of money
and want to divide it up. For each of the following scenarios, either
give a polynomial-time algorithm, or prove that the problem is NP-
complete. The input in each case is a list of the n items in the bag,

along with the value of each.

(a)

(b)

There are n coins, but only 2 different denominations: some coins
are worth z dollars, and some are worth y dollars. They wish to
divide the money exactly evenly.

There are n coins with an arbitrary number of different denom-
inations, but each denomination is a nonnegative integer power
of 2, i.e., the possible denominations are 1 dollar, 2 dollars, 4
dollars, etc. They wish to divide the money exactly evenly.

There are n checks, which are, in an amazing coincidence, made
out to “Bonnie or Clyde.” They wish to divide the checks so that
they each get the exact same amount of money.

There are n checks as in part (c), but this time they are willing
to accept a split in which the difference is no greater than 100
dollars.



2. We define the following three related problems.

5-CLIQUE
Instance: (G) G is a undirected graph.
Acceptance Condition: Accept iff G contains a 5-clique.

CLIQUE
Instance: (G, k), G is a undirected graph, k is an integer in binary.
Acceptance Condition: Accept iff G has a k-clique.

MAX-CLIQUE
Instance: (G), G is an undirected graph.
Goal: Return the size of the largest clique of G.

(a)
(b)

Give a polynomial time algorithm that solves 5-CLIQUE.

Prove MAX-CLIQUE —, CLIQUE (recall that —, is a polyno-

mial time Turing reduction)

This proves we can solve MAX-CLIQUE with a polynomial num-

ber of calls to CLIQUE, and that if CLIQUE is in P, then MAX-

CLIQUE is in FP. (Note that CLIQUE is proven NP-complete

in the textbook.)

Prove CLIQUE —, MAX-CLIQUE.

This shows that MAX-CLIQUE is likely not in FP since CLIQUE

is NP-complete.

Consider the following algorithm for solving MAX-CLIQUE:
MAX-CLIQUE(G):

for i + 1 ton do // m is the number of vertices in G
if not i-CLIQUE(G) then
return -1
return n

We proved in part (a) that i-CLIQUE is in P, and we only make
a polynomial number of calls to k-CLIQUE. Why does this not
prove MAX-CLIQUE is in FP?



Week 13

3. We have seen in class that GRAPH 3-COLOURABILITY is NP-
complete.

(a)
(b)

()

Prove that GRAPH 2-COLOURABILITY is in P.

Hint: Try a greedy algorithm.

Define GRAPH k-COLOURABILITY as:

Instance: (G, k), G is an undirected graph, k an integer in binary.
Acceptance Condition: Accept iff G if k-colourable, i.e., colours
1 through k can be assigned to the vertices of G such that no two
adjacent vertices get the same colour.

Prove that GRAPH k-COLOURABILITY is NP-complete.
Hint: GRAPH 3-COLOURABILITY is NP-complete.

Let us restrict the input graphs to be trees. Prove that this
restricted version of GRAPH k-COLOURABILITY is in P.

Explain, in no more than three sentences, how it is possible that
GRAPH k-COLOURABILITY could be NP-complete for general
graphs, yet be polynomial for certain restricted classes of graphs.

4. Define the class co-NP = {L | L € NP}.
In other words, if a problem X belongs to NP, its complement X (all
its “no” instances) belongs to co-NP.

For example,
COMPOSITE = {m > 1 | m is not prime} is a problem in NP, so
COMPOSITE = PRIME = {m > 1| m is prime} is in co-NP.

We can think of decision problems in co-NP as those which we can
verify “no” instances quickly (there exist a polynomial sized certificate
which can be verified in polynomial time for the “no” instances).

(a)

(b)
(c)

HC (Hamiltonian cycle) is a problem we know is in NP. It is not
known whether HC is in NP or not, and most researchers suspect
it is not. What kind of evidence could prove that a graph does
not have a Hamiltonian cycle? Could it be succinct (polynomial
size)?

Assuming that NP # co-NP, prove that no NP-complete prob-
lem can belong to co-NP.

Define the class co-P analogously. Prove that P = co-P.



