CSC364 Summer 2002 — Homework 2

The following questions are assigned each week. You need only hand in
those questions marked with a star * as part of your assignment, and only
these questions will be marked. Make sure you include a completed and
signed cover page as your first page.

*2.

Week 5

We tend to consider problems solved by polynomial time algorithms
as tractable. What happens if we use such algorithms as procedures
in loops, recursive calls, or different phases of our programs? Will
such a program be tractable, or will it take more time to run? The
fundamental question is whether our idea of tractable is closed under
such operations.

Prove that the class of polynomials over real numbers, R[z], is closed
under

(a) addition,
(b) multiplication, and

(c) composition.

That is, for polynomials p(z) and g(z) € R[z], show that p(z) + ¢(z),
p(z) - g(x), and p(q(z)) € Rlz].

(hand in) Let Si,S2,-..,Sn be a collection of n MP3 songs. Song S;
requires m; kilobytes of storage. We have a personal MP3 player with
D kilobytes of memory, where D < > m;. We want to load the
maximum number of different songs onto our MP3 player.

(a) Give a greedy algorithm that outputs a set of songs to load such
that we load the maximum number of songs possible.

b) Prove that your algorithm correctly finds the maximum number
y
of songs we can store on the player.

(c) State and prove the running time of your algorithm.

Consider the same MP3 player as in question 2. We want to use as
much of the player memory as possible. Prove or disprove: we can
use a greedy algorithm to select songs leaving the minimum amount
of unused storage space on the player.



*5.

Week 6

Let A be an n X n array with each row and column sorted. That
is, for each row i, a;1 < as < --- < a4, and for each column j,
a1; < agj < --+ < apj. Design an algorithm that determines whether a
value d appears in the array. Give the running time of your algorithm
and prove your algorithm correct.

(hand in) In the great convergence of telecommunications, n companies
want to merge. Assume that company ¢ has ¢; customers and the
number of customers remains constant throughout the merger process:
a merged company inherits all customers from the companies being
merged. Assume that all customers are unique.

The Canadian Radio-television and Telecommunications Commission
(CRTC) regulates the industry and wants to ensure sufficient com-
petition in the market and must approve each merger. Furthermore,
the CRTC only approves mergers between exactly two companies at a
time. The risk of a merger being denied is proportional to the number
of customers the two companies have at the time of the merger. For
a sequence of mergers to succeed, each merger must be approved, so
the total risk is the sum of risks of individual mergers.

Design an algorithm to determine an optimal order of mergers to min-
imize the total risk. Prove your algorithm correct and justify its run-
ning time. Note: Higher marks to more efficient algorithms.

Consider the problem of making change for n cents using as few coins
as possible.

(a) Suppose the available denominations of coins are powers of d > 1:
there are d°,d',d?,...,d"* coins for some k > 1. Show that there
is a greedy algorithm that always yields an optimal solution.

(b) Give a set of coin denominations for which the greedy algorithm
does not always yield an optimal solution. You should include
the unit coin (penny) so there is a solution for every value n.



*7.

Week 7

(hand in) Consider an automated manufacturing process where the
product is formed by joining n pieces together. Assume the pieces
are attached in a linear sequence and the order that the product is
assembled is unimportant.

For example, the sequence (p1,p2,ps,...,Ppn) means that piece p; at-
taches to piece po, piece po attaches to piece p3, and so on. To form
the product, we could first attach piece p; to ps and then attach this
joined piece p1g9 to piece ps, or we could first attach py to p3 and then
attach p; to this conglomerate piece pog3.

A robot attaches the pieces together by picking up 2 pieces and joining
them. The cost of the combination is directly proportional to the
weight of the 2 pieces. The cost of combining p; and p; 1 is w; + wiy1
where w; is the weight of piece p;.

Design an algorithm that, given the weights (wq,ws, ..., wy) of the
pieces to be joined in the sequence (p1,p2,p3,---,Pn), determines the
optimal order of combining the pieces yielding the minimum possible
total cost. Give the running time of your algorithm and prove your
algorithm correct. Note: Higher marks to more efficient algorithms.

Consider again the problem of making change for n cents using as few
coins as possible. Design an efficient algorithm that always finds an
optimal solution for any set of denominations. Prove your algorithm
correct and justify its running time.

You are given a vector V = [a1,a9,...,a,] of n integers, any of which
may be positive, negative or zero. A subvector is a contiguous group
of integers [ag,@k+1,---,a;] from this vector. The sum of a vector is
the sum of its elements, and the sum of an empty vector is 0.

(a) Design an efficient algorithm to find the maximum sum of any
subvector of V. Prove your algorithm correct and justify its run-
ning time.

(b) Modify your algorithm above to find a subvector of V' with max-
imum sum.



10.

*11.

12.

Week 8

Consider the alphabet ¥ = {a,b,c}. The elements of ¥ have the
following multiplication table, where the row is the left-hand symbol
and the column is the right-hand symbol.

For example, ab = b, ba = a, and so on. Note that the multiplication
given by this table is neither associative nor commutative.

Design an efficient algorithm that, when given a string w = wyws - - - wy,
of characters in 3*, determines whether or not it is possible to paren-
thesize w such that the value of the resulting expression is b. For
example, if w = abba, your algorithm should return “yes” since either
(a((vb)a)) = b or (((ab)b)a) = b. Prove your algorithm correct and
justify its running time.

(hand in) Consider the following network with source s, target ¢, and
the given capacities for each arc.

Demonstrate Ford-Fulkerson’s algorithm (CLRS page 658, first edition
page 596) on this network. Show the augmenting path found at each
step of the algorithm. Prove that the flow found by the algorithm is
maximum in this network by demonstrating a cut of the same size.

Problem 26-1, CLRS page 692: The Escape Problem, parts a and b.
(It is Problem 27-1, page 625 in the first edition of CLR.)



