CSC364 Summer 2002 — Homework 1

The following questions are assigned each week. You need only hand in
those questions marked with a star * as part of your assignment, and only
these questions will be marked. Make sure you include a completed and
signed cover page as your first page.

*2.

Week 1

. To illustrate how asymptotic notation can be used to rank the effi-

ciency of algorithms, use the relations C (strict subset) and = (set
equality) to put the orders of the following functions into a sequence:

2n5  glomnm  qap2n 3(7) 9100 21500 3v2n

Do not use the relation C. Prove your answers. You need not prove
relationships implied by transitivity.

(hand in) Prove or disprove each of the following statements.

) 5n? — 6n € O(n?)
) nleO(n™)
) 33n3 4 4n? € Q(n?)
) 33n3 + 4n? € Q(n?)
e) n?logn € O(n?)
) n?logn € O(n?)
) n100 4 nlogn € ©(nl001)
) n32™ + 6n23" € O(n32")
) ny/n+nlogn € O(nlogn)
)

100
n2

€ 0(1.001™)

Let a” denote a string of length n characters, each character being
an a. Write a Turing Machine to recognize strings of the form a"b?",
where a and b are elements of the input alphabet ¥ and n is some

nonnegative integer. Explicitly give your machine’s alphabet, set of
states, and transition function. Prove that your TM is correct.



*4.

Week 2

(hand in) Write a Turing Machine which determines whether p divides
q for arbitrary positive integers p and g. Explicitly give the structure
of your TM, your input and tape alphabets, input encoding, set of
states (commenting on the meaning of each state as necessary), and
transition function. Argue the correctness of your TM (you should
convince the grader you are correct, though a full formal proof is not
required).

For a language L, we define an enumerator to be a Turing Machine
which writes each string in £ to its tape exactly once, strings separated
by some symbol #. For finite languages the TM will halt, but for
infinite languages the TM will continue generating new strings forever.
Note that an enumerator does not take input, but may use part of the
tape as work space.

Consider £ being the infinite set of all strings consisting of 0’s and 1’s.
Order these strings lexicographically: order by length (all strings of
length 2 come before any strings of length 3), then alphabetically (011
before 110). Write an enumerator TM to output (write to its tape)
the sequence of strings formed by this ordering. Separate outputed
strings by the # symbol. Your machine should output:

#O#1#00#01#10#11#000#001# ... #111#0000#0001# ...

A write-once Turing Machine is a single tape TM that can alter each
tape square at most once (including the input portion of the tape).
Show that the write-once TM model is equivalent to the ordinary TM
model. (Hint: consider the write-twice TM as a first step, and use lots
of tape!)



*9.

Week 3

Show that if £ is the language accepted by a k-tape, [-dimensional,
nondeterministic Turing Machine with m heads per tape, then L is
accepted by some ordinary deterministic Turing Machine with one
single-dimensional tape and one head.

Suppose the tape alphabets of all Turing Machines are selected from
some infinte set of symbols a1, as, . ... Show how each Turing Machine
may be encoded as a binary string.

(hand in) Let C be a language. Prove that C C X* is Turing-
recognizable (semi-decidable or recursively enumerable) iff a decidable
(recursive) language D exists such that C = {z | 3y € £* such that
z#y € D}, where # ¢ .

That is, C is Turing-recognizable iff there is some decidable language
D such that each string in C is the prefix of some string in D.



*10.

11.

12.

Week 4

(hand in) Given a string w € {0,1}*, let w be the one’s complement
of w, i.e., w is the result of flipping each 0 to 1 and each 1 to 0 in w.
Let

S ={(M)| M is a TM that accepts w whenever M accepts w}.

Prove that S is undecidable.
Prove each of the following problems either decidable or undecidable.

(a) Given a TM M, an input string w, and a number k > 0, does M
use at most k tape squares on input w?

(b) Given a TM M and an input string w, does there exist a k > 0
such that M uses at most k tape squares on input w? (That is,
does M use a finite amount of tape on input w?)

Let us now consider the “real-word” problem of protecting our comput-
ers from viruses. We would like to build a filter (a virus checker) which
will detect programs which are viruses before they are executed. Un-
fortunately you will show that no virus checker can detect all viruses
without itself being a virus. Of course, we must formalize what we
mean by these terms.

Counsider a modern computer which uses some fixed operating system,
under which all programs run. A program can be thought of as a func-
tion from strings to strings: it takes one string as input and produces
another as output. On the other hand, a program itself can be thought
of as a string.

By definition, a program P spreads a virus on input z if running P
with input = causes the operating system to be altered, and it is safe
on input z if this doesn’t happen. A program P is said to be safe if it
is safe on every input string.

A wvirus checker is a program, perhaps called IsSafe, that when given
input (P,z), where P is a program and z is a string, produces the
output ‘YES’ if P is safe on input z and ‘NO’ otherwise.

Prove that if the possibility of a virus exists — i.e., there is a program
and an input that would cause the operating system to be altered —
then there can be no virus checker that is both safe and correct.



