1 CFGs

Give CFG grammars (using BNF notation) for the following languages or say it cannot be done

1. All strings over the alphabet $\{0,1,2,3\}$ sorted in decreasing order.

Answer:

```
<S> ::= <threes> <twos> <ones> <zeros> | epsilon
<threes> ::= 3 <threes> | epsilon
<twos> ::= 2 <twos> | epsilon
<ones> ::= 1 <ones> | epsilon
<zeros> ::= 0 <zeros> | epsilon
```

2. All strings over the alphabet {a,b}, in which every b is both immediately preceded by and followed by at least one a.

Answer:

```
<S> ::= a <BA> <S> | epsilon
<BA> ::= b a <BA> | epsilon
```

3. $a^n b^m a^n b^m n, m >= 0$ cannot be expressed by CFG

2 english descriptions

Give English descriptions of the languages described by each of the following grammars.

a) $\langle S \rangle$::= $\langle S \rangle$ a $\langle S \rangle$ b $\langle S \rangle$ b $\langle S \rangle$ a $\langle S \rangle$ | epsilon

Answer:

All strings with an equal number of a's and b's.

Example:

b) $\langle S \rangle ::= a \langle S \rangle a \mid b \langle S \rangle b \mid c \langle S \rangle c \mid epsilon$

Answer: All even length strings over {a,b,c}, where the second half of the string is the reverse of the first half.

Example:

c) Adjust the grammar in (b) to make it generate all palindromes.

What do we need? We need to also generate odd length strings.

Answer: $\langle S \rangle$::= a $\langle S \rangle$ a | b $\langle S \rangle$ b | c $\langle S \rangle$ c | a | b | c | epsilon

3 ambiguity

Not ambiguous.