
UNIVERSITY OF TORONTO AT MISSISSAUGA
April 2006 Examination

CSC 324H5 S
Instructor: Richard Krueger

Duration — 3 hours
No Aids Allowed

Student Number:

Last (Family) Name(s): SOLUTIONS

First (Given) Name(s): SAMPLE

It is an academic offence for students to possess the following items at their examination desks: cell phones,

pagers of any kind, IPODs, MP3 players, wristwatch computers, personal digital assistants (e.g., palm pilots)

or any other device that is electronic. If any of these items are in your possession now, please ensure they

are turned off and put them with your belongings at the front (or side) of the room before the examination

begins — no penalty will be imposed. A penalty WILL BE imposed if any of these items are kept at your

examination desk. Please note, students are NOT allowed to petition to RE-WRITE a final examination.

Do not turn this page until you have received the signal to start.
(In the meantime, please fill out the identification section above,

and read the instructions below carefully.)

This final examination consists of 11 questions on 13 pages (including
this one). When you receive the signal to start, please make sure that
your copy of the test is complete and write your student number at the
bottom of every page, where indicated.

Answer each question directly on the test paper, in the space provided,
and use the reverse side of the pages for rough work. If you need more
space for one of your solutions, use the reverse side of a page and indicate
clearly the part of your work that should be marked.

Concise, well thought-out answers will receive higher credit than long
rambling ones. Unreadable answers will be given zero (0) credit, so write
legibly and clearly.

In the programming questions, you do not have to write pre-
conditions/post-conditions. You do not need to comment your code,
but use meaningful variable names. You may use helper procedures
(unless otherwise indicated). Use recursion where possible.

Marking Guide

1: / 8

2: / 10

3: / 10

4: / 10

5: / 10

6: / 10

7: / 14

8: / 10

9: / 10

10: / 10

11: / 8

TOTAL: /110
Good Luck!

Total Pages = 13 Page 1 cont’d. . .

CSC 324H5 S Final Examination — Solutions Page 2 of 13

Question 1. Prolog Basics [8 marks]

Part (a) [2 marks]

Write max/3 in Prolog (without using cuts). It takes three integers as arguments and succeeds if
the third argument is the maximum of the first two.

Sample Solution

max(X,Y,Y) :- X =< Y.
max(X,Y,X) :- X > Y.

Part (b) [2 marks]

We can make this more efficient with a cut. Fill in both blanks below with the appropriate goals
so that max/3 works correctly when all arguments are instantiated. (Recall the goal true always
succeeds. Use it instead of leaving a blank empty.)

max(X,Y,Y) :- X =< Y , !, true .
max(X,Y,X).

Part (c) [2 marks]

Queries of the form ?- max(3,2,X). work fine, but there’s a problem lurking. Give an example of
a query that doesn’t have correct results with the version of max/3 from part (b).

Sample Solution

max(2,3,2).

This is matched as a fact whenever the first rule fails.

Part (d) [2 marks]

Write the following as Prolog clauses, queries or facts. Introduce any predicates, variables and
constants you feel are necessary.

If a tree falls in the forest, it makes a noise if someone is nearby.

Many solutions are acceptable for these two questions.

noise-made(T) :- tree-in-forest(T), falls(T), nearby(_,T).

Is there no honest lawyer?

?- \+ (lawyer(X), honest(X)).

Student #: cont’d. . .

CSC 324H5 S Final Examination — Solutions Page 3 of 13

Question 2. Prolog Lists [10 marks]

Part (a) [5 marks]

Lexicographic order is like the order of words in a dictionary. Based on the ordering of letters (A
through Z), words are sorted alphabetically. If one word is a prefix of another, the shorter word
comes first, so an comes before ant.

For this question, we’ll use lists instead of words, and we’ll use integers instead of letters. Write
a Prolog predicate lexless/2 that takes two lists of integers and is true if its first argument is
(strictly) lexicographically less than the second argument.

For example, lexless([1,14], [1,14,20]) should succeed, but lexless([14,15,20],
[7,15,15,4]) should fail.

Sample Solution

lexless([],[_|_]).
lexless([X|_],[Y|_]) :- X < Y.
lexless([A|B],[C|D]) :- A = C, lexless(B,D).

Part (b) [5 marks]

Write a Prolog predicate map(Pred, List1, List2). It takes the name of a binary predicate
followed by two lists of equal length, and succeeds if Pred is true on all successive pairs of elements
from List1 and List2. You may assume that Pred is instantiated. (Do not use the built-in maplist
in your solution.)

For example, map(square, [1,2,3], [1,4,9]) should succeed if square is suitably defined.
Hint: We need some way to call the predicate with arguments. The Prolog goal Q =.. [p,x,y]
unifies Q with p(x,y), and the goal call(p(x,y)) succeeds if Prolog can prove p(x,y).

Sample Solution

map(_,[],[]).
map(P,[X|L],[Y|M]) :- Q =.. [P,X,Y], call(Q), map(P,L,M).

Student #: cont’d. . .

CSC 324H5 S Final Examination — Solutions Page 4 of 13

Question 3. Prolog Data Structures [10 marks]

Suppose a directed graph G = (V,E) is represented in Prolog using the predicate vertex(X), which
is true if the value of X is a vertex, and predicate edge(X,Y), which is true if there is an edge from
X to Y in G. A path is a list of vertices such that every pair is an edge of G.

Part (a) [4 marks]

Assume the graph is acyclic (contains no cycles). Write a predicate path(X,Y,P) which is true if
P is a path in G from vertex X to Y (P must start with X and end with Y). Do not use any helper
predicates.

Sample Solution

path(X,X,[X]).
path(X,Y,[X|P]) :- edge(X,N), path(N,Y,P).

Part (b) [6 marks]

Graphs, in general, may contain cycles. Our specification of path/3 above might get caught forever
in a cycle. Rewrite path/3 using a helper predicate such that only simple paths are found (a path
is simple if it never visits a vertex more than once).

Sample Solution

path(X,Y,P) :- path(X,Y,P,[]).
path(X,X,[X],V) :- \+ member(X,V).
path(X,Y,[X|P],V) :- edge(X,N), \+ member(N,V), path(N,Y,P,[X|V]).

Student #: cont’d. . .

CSC 324H5 S Final Examination — Solutions Page 5 of 13

Question 4. Prolog Search Trees [10 marks]

Consider the following Prolog program.

a(X) :- b(X), c(X).
a(X) :- e(X), d(Z).
b(X) :- f(X).
c(X) :- d(X).
d(2).
d(3).
e(4).
e(1).
f(1).
f(2).

Part (a) [8 marks]

Draw the search tree for the Prolog query ?- a(X). and list, in the order they are produced, all
the answers Prolog would give.

Sample Solution

X = 2 ;

X = 4 ;

X = 4 ;

X = 1 ;

X = 1 ;

No

Part (b) [2 marks]

Suppose the first rule is replaced with the rule

a(X) :- b(X), !, c(X).

List any answers to for the query ?- a(X). that Prolog would find using this modified program.

Prolog will report:

?- a(X).

No

Student #: cont’d. . .

CSC 324H5 S Final Examination — Solutions Page 6 of 13

Question 5. Unification [10 marks]

What is the term resulting from unifying the following pairs of expressions? Write the answer in
the appropriate box, or write “cannot” if the two expressions cannot be unified.

Expression 1 Expression 2 Unification Result

p(X, f(b)) p(a, Y) p(a, f(b))
bindings: X = a, Y = f(b)

q(f(a), _, g(h(c))) q(f(_), b, X) q(f(a), b, g(h(c)))
bindings: X = g(h(c))

q(X, f(g(Y)), Y) q(a, f(Z), h(b)) q(a, f(g(h(b))), h(b))
bindings: X = a, Y = h(b), Z = g(h(b))

X + 3 7 cannot

[[Y|_], b, c] [X,b,Y] [[c| G181], b, c]
bindings: Y = c, X = [c| G181]

Student #: cont’d. . .

CSC 324H5 S Final Examination — Solutions Page 7 of 13

Question 6. Context-Free Grammars [10 marks]

Suppose we are writing an new programming language “MUL6” language (Made-Up Language
2006). One task is to formally specify the language’s grammar. Suppose we want several operators
of various precedence and associativity:

Precedence Operators Operator Type Associativity
highest ~, ! prefix unary right to left (i.e., right associative)

@ infix binary none
infix binary left to right (i.e., left associative)

lowest %, & infix binary left to right (i.e., left associative)

Recall that higher precedence operators are executed first, and associativity determines which
operators of equal precedence are executed first.

Complete the following BNF definition to enforce the operator precedence and associativity
rules. Assume that the nonterminals <identifier> and <number> are defined for you and represent
variables and numerical values. You do not have to handle parentheses.

<elem> ::= <identifier> | <number>
<expr> ::=

Sample Solution

<expr> ::= <expr> % <term1> | <expr> & <term1> | <term1>
<term1> ::= <term1> # <term2> | <term2>
<term2> ::= <term2> @ <term3> | <term3>
<term3> ::= ~ <term3> | ! <term3> | <elem>

Student #: cont’d. . .

CSC 324H5 S Final Examination — Solutions Page 8 of 13

Question 7. Interpretation [14 marks]

Suppose we are implementing an interpreter for our “MUL6” language in Scheme. Don’t worry
about the full details about this fantastic new language, as we’ll only touch on a few points in this
exam. Be aware though that its syntax is somewhat different from that of Scheme.

Part (a) [5 marks]

The following Scheme code implements a Scheme interpreter.

(define read-eval-print
(lambda ()

(display "--> ")
(write (eval (read)))
(newline)
(read-eval-print)))

Note that read will read a Scheme expression from standard input and return it, eval takes a
legal Scheme expression and evaluates it (in the current environment), and write prints a Scheme
object to standard output.

Explain precisely the most important changes (if any) that must be made to each of the read,
eval and write procedures to convert this to an interpreter for MUL6. (Explain what the new
code must do, don’t try to write the code.)

Answers will vary.

Student #: cont’d. . .

CSC 324H5 S Final Examination — Solutions Page 9 of 13

Part (b) Environments [6 marks]

Our MUL6 interpreter needs some way to keep track of variables and their values. Our environment
will keep track of this as a list of lists of variable names and values. For example, the following
environment has a bound to 1 and b bound to 2 (notice that the first a shadows the later a):

((a 1) (b 2) (a 5))
Complete the following Scheme procedures to implement our environment representation.

(define empty-env ; returns an empty environment
(lambda () ’()))

(define extend-env ; returns an environment that extends "env" and
(lambda (vars vals env) ; binds the "vals" to the "vars"

(if (null? vars) env
(cons (list (car vars) (car vals)) (extend-env (cdr vars) (cdr vals) env)))))

(define apply-env ; returns the value of the variable "var" in "env"
(lambda (env var) ; or prints an error if "var" not bound in "env"

(if (null? env) (error ’apply-env "No binding for ~s" sym)
(if (eq? (caar env) var) (cadar env)

(apply-env (cdr env) var)))))

Part (c) [3 marks]

Suppose MUL6 includes a “let” statement (with the expected semantics) as follows (in BNF):
<expr> ::= let <identifier> = <expr> {, <identifier> = <expr>}* in <expr>

Recall that the Extended BNF notation “{ A }*” means A can be repeated zero or more times.
Suppose the following MUL6 code was presented:

let x = 1 in /* 1 */
let v = 5, x = 7 in /* 2 */

2
3 /* 3 */

What should the environment look like at the three indicated points in execution? Use the
procedures from part (b) and assume the initial environment is stored in the Scheme variable
starting-env.

/* 1 */:

/* 2 */:

/* 3 */:

Student #: cont’d. . .

CSC 324H5 S Final Examination — Solutions Page 10 of 13

Question 8. Parameter Passing [10 marks]

Our new programming language “MUL6” uses pass-by-name parameter passing. Suppose the
following is a procedure declaration in MUL6:

procedure swap (x, y)
var t = x

begin
x = y
y = t

end

Assume that var declares a list of variables local to the procedure, and begin and end delimit
the procedure body.

Part (a) [3 marks]

Should MUL6 use static or dynamic scope for variables? Explain.

Dynamic scope. We want the names passed as arguments to be evaluated in the envi-
ronment of the caller.

Part (b) [4 marks]

What happens if we try to use this procedure to swap the values of variables s and t? That is,
what problem do we encounter when we try to call swap(s,t)? How could we solve this problem?

The names t will clash. A solution would be to ensure that the “local” t gets a new,
unique name when t appears within one of its arguments.

Part (c) [3 marks]

Explain what problem occurs if we try to call swap(i, a[i]), where a is an array. How can we
get swap to exchange the values of i and a[i]?

The value of i will already have changed, so the final mention of a[i] will refer to an
unexpected array location. A solution would be to call swap(a[i], i) instead. We
need to ensure that the binding of x does not appear within the expression y.

Student #: cont’d. . .

CSC 324H5 S Final Examination — Solutions Page 11 of 13

Question 9. Scheme Macros [10 marks]

The following is an “object” implemented in Scheme:

(define 2d-vector
(lambda (inx iny)

(let ((x inx) (y iny))
(lambda args

(let ((msg (car args)))
(apply (cond ((equal? msg ’x) (lambda () x))

((equal? msg ’y) (lambda () y))
((equal? msg ’stretch)
(lambda (factor)
(set! x (* x factor)) (set! y (* y factor))))

) (cdr args))))))

We want a Scheme syntactic form (macro) named class so that we can write the above as:

(define 2d-vector
(class (inx iny)

; list of pairs of instance variable and initial value
((x inx) (y iny))
; pairs of method header and body
((x) x)
((y) y)
((stretch factor) (set! x (* x factor)) (set! y (* y factor)))))

Fill in the blanks below to complete the class macro. It should work for any “class” with any
number of instance variables, any number of methods, and any number of arguments for methods.

Sample Solution

(define-syntax class
(syntax-rules ()

((_ initials vars ((method-name margs ...) body ...) ...)
(lambda initials

(let vars
(lambda args
(let ((msg (car args)))

(apply (cond
((equal? msg ’method-name) (lambda (margs ...) body ...))
...)

(cdr args)))))))))

Student #: cont’d. . .

CSC 324H5 S Final Examination — Solutions Page 12 of 13

Question 10. Sorting in Scheme [10 marks]

Recall that the Insertion Sort algorithm inserts elements, one at a time, into a sorted list. For
simplicity in this question, we will only consider lists of integers.

Part (a) [5 marks]

Suppose we have a procedure insert that inserts an element into a sorted list. For example,
(insert 3 ’(1 5 7)) =⇒ (1 3 5 7)

Write a Scheme procedure isort that takes a list of numbers and performs an insertion sort,
returning the sorted list. (Hint: Insert the first element into a sorted list.)

Sample Solution

(define isort
(lambda (x)
(if (null? x) x

(insert (car x) (isort (cdr x))))))

Part (b) [5 marks]

Write the procedure insert in Scheme.

Sample Solution

(define insert
(lambda (a l)
(cond ((null? l) (list a))

((< a (car l)) (cons a l))
(else (cons (car l) (insert a (cdr l)))))))

Student #: cont’d. . .

CSC 324H5 S Final Examination — Solutions Page 13 of 13

Question 11. Prolog in Scheme [8 marks]

Suppose we are implementing a Prolog interpreter in Scheme. Right now our main interpreter loop
looks like this:

(define (prolog-rep)
(display "?- ")
(if (prove (read-prolog-query))

(display "Yes\n")
(display "No\n"))

(prolog-rep))

Assume read-prolog-query reads a query from the user and returns it in the form required
by prove. If prove is given a query containing no variables, it returns true if the list of goals
can be proven, and false otherwise. If prove is given a query containing variables, it outputs each
satisfying instantiation of the variables (by calling the print-instantiation procedure each time)
and (like Prolog) returns false once the search tree has been exhausted.

We want to allow computation of the search tree to be stopped after a satisfying instantiation is
found, as we can in SWI-Prolog. Rewrite the prolog-rep and print-instantiation procedures
using Scheme continuations so that “Yes” will be printed if another solution might exist, and “No” if
the search tree has been exhausted. Define any global variables you might need. You may reference
the old print-instantiation procedure via the name old-print-instantiation (remember to
pass on any arguments!). Calling the Scheme procedure more-solutions? with no arguments will
prompt the user and return true if another solution is desired, and false otherwise (i.e., like pressing
; or pressing Enter in Prolog, respectively).

Note: Your goal is to have this work just like SWI-Prolog, but without having to return through
all the levels of prove recursion.

Sample Solution

(define done #f)

(define (prolog-rep)
(display "?- ")
(if (call/cc (lambda (k) (set! done k) (prove (read-prolog-query))))

(display "Yes\n")
(display "No\n"))

(prolog-rep))

(define print-instantiation
(lambda args
(let ((val (apply old-print-instantiation args)))

(if (not (more-solutions?)) (done #t)
val))))

Student #: End of Solutions

