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ASSIGNMENT 2

1. Define sum so that one can write code similar to the mathematical summation notation 2321 i
(sum i =1 to 10 (x i 1)) => 385

Here = and to are keywords, i is a single user-supplied variable, (* i i) is a single user-supplied
expression, 1 and 10 are user-supplied expressions that evaluate to integers. If the first integer is
larger than the second, the result of sum should be zero (this matches the mathematical convention).
The integers should be evaluated at most once during execution, to avoid problems if they come from
expressions with side-effects.

2. Define free that takes an expression e composed of lambda expressions, and returns a list representing
the set of all variables that occur free in e. The list must not contain multiple copies of variables. For
example,

(free ’((lambda (x) (x y (2))) (lambda (a) (lambda (n) ((a n) (c z)))))) => (y z c)

All symbols except lambda should be considered variables, and you may assume the expression does
not contain any macros or other syntactic forms (in particular, it does not include let, if, quote,
quasiquote, etc.).

3. The cond expression in Scheme chooses one set of expressions to evaluate depending on which test
returns true. The switch statement in C permits flow to “fall through” to the next clause unless a
break statement appears. We combine these ideas in this question.

Define cond* which takes several clauses (much like the Scheme cond), where each clause starts with
a test (or the keyword else), contains one or more expressions, and optionally ends with the keyword
break.

When evaluated, each clause is considered in order left-to-right. The test is evaluated and:

e If the test evaluates to #f, the clause is skipped and the next clause is considered.

e If the test does not evaluate to #£f, the rest of the expressions within the clause are evaluated in
order. If the clause ends with break, the value of the preceding expression is returned. If the
clause does not end with break, flow “falls through” to the next clause: the test is evaluated
(and value is ignored) and the following expressions are evaluated. This continues until a break
is encountered as the final expression in a clause, or there are no clauses remaining in the condx,
in which case the value of the last expression is returned.

Once a clause is matched, no further clauses are considered for matching. If the keyword else appears
instead of a test, the clause is automatically matched.

For example, the following two expressions are equivalent and both return 2:

(cond* (#t 1 2 break) (cond (#t 1 2)
(#f 3 4 break)) (#f 3 4))

The following expression would evaluate the first test (#t), evaluate 1 and 2, and “fall through” to the
next clause. The test would be evaluated (#f) and result discarded, followed by evaluating 3 and 4.
This is the end of the cond* expression, so 4 would be returned.

(cond* (#t 1 2)
(#f 3 4))



4. Propositional calculus (or sentential logic) contains constants true and false, a set of propositional
variables, four binary connectives (and, or, implies, iff) and one unary operator (not). We will model
well-formed formulas of propositional calculus as follows:

e Any symbol, #t or #£ is a wif.
o If p is a wff, then (not ¢) is a wif.
If ¢ and ¢ are wffs, then (¢ and ), (¢ or ), (¢ implies ), (p iff ) are wifs.

Nothing else is a wif.

Notice that wifs are fully parenthesized for this question.

(a) Define proposition-wff? that takes a single argument and returns whether it is a well-formed
formula.

b) Define proposition-eval that takes a wif and a list of variables, and returns the truth value of
prop
the wif when those variables are true and any others are false.

(c) Define proposition-satisfiable? that takes a wif and returns whether some setting of its
variables makes the proposition true.

(d) Define proposition-normalize that takes a wif and returns an equivalent wif where all negations
are moved as far inside as possible, using the usual rules of propositional calculus (for (p iff 1))
use the negated form (¢ iff (not ))).

5. (a) Consider the following class-like procedure:

(define (Circular-Queue capacity)
(let ((v (make-vector capacity))
(head 0)
(size 0))
(lambda args
(let ((m (car args)))
(cond ((equal? m ’size) size)
((equal? m ’enqueue)
(vector-set! v (modulo (+ head size) capacity) (cadr args))
(set! size (+ size 1)))
((equal? m ’dequeue)
(set! size (- size 1))
(let ((r (vector-ref v head)))
(set! head (modulo (+ head 1) capacity))
r)))))))

Rewrite it so that each branch of cond produces a procedure, and apply the (result of) cond to
the cdr of args.

(b) Write a syntactic form class so that one can write the above as:

(define Circular-Queue
(class (capacity)

; list of pairs of instance variable and initial value
((v (make-vector capacity))
(head 0)
(size 0))
; pairs of method header and body
((size) size)
((enqueue o)
(vector-set! v (modulo (+ head size) capacity) o)
(set! size (+ size 1)))



((dequeue)

(set! size (- size 1))

(let ((r (vector-ref v head)))
(set! head (modulo (+ head 1) capacity))
r))))

Don’t worry about handling methods that take an arbitrary number of arguments.

(¢) Rewrite class so that the instance variables are in two lists, according to whether we automati-
cally want getter methods created:

(define Circular-Queue
(class (capacity)
(private
(v (make-vector capacity))
(head 0))
(public
(size 0)
(capacity capacity)) ; let’s make capacity public as well
((enqueue o)
(vector-set! v (modulo (+ head size) capacity) o)
(set! size (+ size 1)))
((dequeue)
(set! size (- size 1))
(let ((r (vector-ref v head)))
(set! head (modulo (+ head 1) capacity))
r))))

Each instance variable list is optional, but you may assume that they appear before the methods,
and if both appear then private appears before public.

Notice we are getting the benefits of the Java getter method convention for instance variable
access, without having to write those methods ourselves!

HiINT: Use more than one rule, and have some of them rewrite into the other forms.

(d) Extend class from (b) to allow getter variables to be annotated where they are declared:

(define Circular-Queue
(class (capacity)

((capacity get capacity)

(v (make-vector capacity))

(head 0)

(size get 0))

((enqueue o)

(vector-set! v (modulo (+ head size) capacity) o)

(set! size (+ size 1)))

((dequeue)

(set! size (- size 1))

(let ((r (vector-ref v head)))
(set! head (modulo (+ head 1) capacity))
r))))

You may allow the explict lists from (c) after the non-explicit one.
HINT: Use rules that recursively rewrite this into (almost) the explict form of (c).

(e) In this part we’ll add subclassing to (d).

Because of the way that syntax-rules works, we can’t introduce a meaning for this or super
into class and give it meaning to the user of class. Most serious Scheme implementations
provide more powerful macro systems that handle this, but for simplicity we’ll just require the



user to specify the name used to refer to the superclass part of the object. What this means in
the implementation is simply that super should not be treated as a keyword. What this means
for the user is that they aren’t restricted to using the name super.

Extend class from (d) so that it handles an optional call to a superclass in the form shown below:

(define Point
(class (x y)
((x get x)
(y get y))
((equal? p) (and (= x (p ’x)) (=y (p ’y¥)IN)

(define Coloured-Point
(class (colour x y) (super (Point x y))
((colour get colour)
((equal? p) (and (super ’equal? p) (equal? colour (p ’colour)))))))

HINT: Add a private instance variable for the superclass object. Add a catch-all procedure to
the end of the method-selecting cond that passes the method call to the superclass object. If no
superclass object is specified, supply a dummy one that returns >no-such-method regardless of
the method name and arguments.



