CSC 324 2006W
ASSIGNMENT 1

(1) Suppose we want to say

(sqrt (+ (squares (1list 3 4))))

to get the size of a vector represented by a list.

(a)

(b)
()

(c)

Define pluralize that:
e Takes a single argument: a procedure p taking one argument.
e Returns a procedure of one argument that given a list returns a list of the elements transformed by p.
Define squares using pluralize.
Define auto-apply that:
e Takes a single argument: a procedure p.
e Returns a procedure that:
— Given a list, returns (the result of) p called with the elements of the list as its arguments.
— Given other arguments, returns p called with those arguments.
Note: to create a procedure that takes a variable number of arguments use the following form:
(lambda args ; args gets the arguments as a list
)
Use auto-apply to overload + so that it can be used as shown above.
Define fix that:
e Takes three arguments: a procedure p, natural number n and arbitrary value a.
e Returns a procedure that given m arguments, where n<m+1, calls p with m+1 arguments, where a is used as
an extra argument inserted as the nth argument.
Use fix to define square using Scheme’s expt procedure.
Define tester that:
e Takes a procedure of one argument and a list of pairs of test input and expected output.
e Returns the results of calling the procedure on the test inputs, comparing the results with the expected
outputs, as a list of the following form:
(passed <test-input>)
(failed <test-input> expected <expected-output> got <actual-output>)
Use equal? to compare the actual and expected outputs.
For example:
(tester - ’((1 2) (3 -3)))
=> ((failed 1 expected 2 got -1) (passed 3))
Define regression-tester, useful for comparing whether a new procedure behaves the same as an existing one. It:
e Takes a procedure p of one argument and a list of test inputs.
e Returns a procedure that: given a procedure q tests it using tester, comparing q and p on the list of test
inputs.
For example:
(define sqrt-tester (regression-tester sqrt ’(0 1 2.25))
; + works surprisingly well if we want the square root of 0 or 1, but not so well on 2.25
(sqrt-tester +)
=> ((passed 0) (passed 1) (failed 2.25 expected 1.5 got 2.25))
The expected output (of sqrt in our example) should be calculated when regression-tester is called, not every
time its result (sqrt-tester in our example) is called.
Use tester to test sqrt-tester (!) on two well-chosen test cases (sqrt-tester should of course pass your test).

(4) We can create things in Scheme that behave like objects.

(a)

(b)

Define make-2d-vector to create 2-dimensional vector ‘objects’ that behave as follows:

(define v (make-2d-vector 3 4)) ; v represents vector (3,4)
(v ’x) => 3
(v ’y) => 4

(v ’display) => display (3,4)

(v ’length) => 5

(define w (v ’scale 2)) ; w represents vector (6,8)

(v ’add (make-2d-vector -5 7)) => vector representing (-2,11)
Extend the add method to accept any number of vectors. For example:

((v ’add v w) ’display) ; display (12,16)

((v ’add) ’display) ; display (3,4)



