
Computer S
ien
e 263/B63 University of TorontoDesign and Analysis of Data Stru
turesNOTES ON AVL TREESby Vassos Hadzila
osBinary sear
h trees work well in the average 
ase, but they still have the drawba
k of linear worst 
ase time
omplexity for all three operations (Sear
h, Insert and Delete).De�nition: A binary tree of height h is ideally height-balan
ed if every leaf has depth h or h� 1, and everynode of depth < h� 1 has two 
hildren.It would be ni
e if we 
ould keep the binary sear
h tree ideally height-balan
ed at all times. Then a treeof n nodes would be guaranteed to have height h = b log2n 
, so sear
hes would always take time in O(logn).But insertions and deletions might destroy the ideally height-balan
ed property, and a reorganisation (tomake the tree ideally height-balan
ed again, while maintaining the binary sear
h tree property) might takeas mu
h as linear time.AVL (or height-balan
ed) trees are a happy 
ompromise between arbitrary binary sear
h trees andideally height-balan
ed binary sear
h trees. The name \AVL" 
omes from the names of the two Sovietmathemati
ians, Adelson-Velski and Landis, who devised them.De�nition: A binary tree is height-balan
ed if the heights of the left and right subtrees of every node di�erby at most one. An AVL tree is a height-balan
ed binary sear
h tree.Note: By 
onvention, the height of an empty binary tree (one with 0 nodes) is �1; the height of a tree
onsisting of a single node is 0.Examples:
Non-examples:
Good news:� The worst 
ase height of an AVL tree with n nodes is 1:44 log2(n + 2). Thus, the Sear
h operation
an be 
arried out in O(logn) time in the worst 
ase.� Insertions and deletions 
an also be done in O(logn) time, while preserving the \AVL-ness" of the tree.� Empiri
al studies show that AVL trees work very well on the average 
ase too.Bad news: The algorithms for insertion and deletion are a bit 
omplex.De�nition: Let hR and hL be the heights of the right and left subtrees of a node m in a binary treerespe
tively. The balan
e fa
tor of m, BF [m℄, is de�ned as BF [m℄ = hR � hL.For an AVL tree, the balan
e fa
tor of any node is �1, 0, or +1.1



� If BF [m℄ = +1, m is right heavy.� If BF [m℄ = �1, m is left heavy.� If BF [m℄ = 0, m is balan
ed.In AVL trees we will store BF [m℄ in ea
h node m. When we draw AVL trees we will put a \+", \�", or\0" next to ea
h node to indi
ate, respe
tively, that the node's balan
e fa
tor is +1, �1, or 0.Next we 
onsider algorithms for the Sear
h, Insert and Delete operations in AVL trees.THE ALGORITHM FOR Sear
hWe simply treat T as an ordinary binary sear
h tree | there is nothing new to say here.THE ALGORITHM FOR InsertTo insert a key x into an AVL tree T , let us �rst insert x in T as in ordinary binary sear
h trees. That is,we tra
e a path from the root downward, and insert a new node with key x in it in the proper pla
e, so asto preserve the binary sear
h tree property. This may destroy the integrity of our AVL tree in that� the addition of a new leaf may have destroyed the height-balan
e of some nodes, and,� the balan
e fa
tors of some nodes must be updated to take into a

ount the new leaf.We will address ea
h of these points in turn.Rebalan
ing an AVL tree after InsertionThe height-balan
e property of a node may have been destroyed as a result of the insertion of the new leafin two ways:(1) the new leaf in
reased the height of the right subtree of a node that was already right heavy (before theinsertion); or,(2) the new leaf in
reased the height of the left subtree of a node that was already left heavy (before theinsertion).These two 
ases are illustrated in Figures 1(a) and (b). Note that the insertion of the new leaf 
ana�e
t the balan
e fa
tors only of its an
estors. To see this, observe that the height of any node that is notan an
estor of the new leaf is the same as before the insertion; 
onsequently the heights of the left and right
hildren of su
h a node are the same as before the insertion. Node m in Figure 1 is assumed to be theminimum height an
estor of the new leaf whi
h is no longer height balan
ed as a result of the insertion.Sin
e the two 
ases are symmetri
 (one is obtained from the other by 
hanging every referen
e of \right"to \left", and of \+" to \�", and vi
e versa), we shall only 
onsider 
ase (1) in detail. There are two waysin whi
h (1) 
ould arise, illustrated in Figure 2(a) and (b) respe
tively. The balan
e fa
tors indi
ated for Aand B are after the insertion of the new node.The subtree shown in Figure 2(a) 
an be rebalan
ed by a simple transformation 
alled \single leftrotation" on node m. This transformation is illustrated in Figure 3: In 3(a) we 
opied the subtree ofFigure 2(a), and 3(b) shows the result of the single left rotation on that subtree.Note that this transformation has the following properties.S.1 It rebalan
es the subtree rooted at node m (so that subtree be
omes height-balan
ed again).S.2 It maintains the binary sear
h tree property.S.3 It 
an be done in 
onstant time: only a few pointers have to be swit
hed around. As an exer
ise, write aprogram that implements this rotation, given a pointer to nodem, assuming the standard representationfor binary trees.S.4 It keeps the height of m equal to its height before the insertion of the new node, namely, height h+ 2.2



new node

�

(b)(a)
h+ 1

A+ m

x
h

mA

x
h+ 1 h

Figure 1

(b)(a)

�
x

mA B++ + ++ BA m
h

x
hh h

Figure 2Unfortunately the subtree in Figure 2(b) 
annot be rebalan
ed by a single left rotation. You should
he
k that the subtree resulting from su
h a transformation is not height-balan
ed.Assume for now that the subtrees of node B in Figure 2(b) are nonempty (i.e., h 6= �1). Figure 4(a)shows these subtrees in more detail. This more detailed pi
ture leads to a di�erent way of transformingthe subtree into a height-balan
ed one. This transformation is 
alled a \double right left rotation" and isillustrated in Figure 4(b). The name 
omes from the fa
t that this transformation 
an be obtained if werotate �rst B to the right and then, in the resulting subtree, rotate C left. The balan
e fa
tors labeled as\�=�" in Figure 4 depend on whether the new node was a
tually inserted under T22 (the �rst entry of thelabel) or under T21 (the se
ond entry of the label).If the subtrees of node B in Figure 2(b) are empty (i.e., h = �1) then A has only a right 
hild, B, andB has only a left 
hild, the new node x. The subtree rooted at A is not height-balan
ed and the situation
an be re
ti�ed again with a double right-left rotation that makes x the root of the subtree, and A and B its3



rotationsingle left+++ BA m

x(a)
T1 T2 T3

00
T3T2T1 (b)

BA m
x

h h h h
Figure 3

(b)

� rotationright leftdouble 0=+�=0 0

or
+=�

T3T22T21T1 Ch� 1
(a)

mA B++
h h

x x
h

BA m
h� 1
C

T21 T3orx T22xh T1
Figure 4left and right 
hildren, respe
tively. This 
ase 
an also be thought of as a degenerate instan
e of Figures 4(a)and (b), with C = x, and subtrees T1, T21, T22 and T3 all empty.The double right left rotation has the following properties.D.1 It rebalan
es the subtree rooted at m, (so that subtree be
omes height-balan
ed again).D.2 It maintains the binary sear
h tree property.D.3 It 
an be done in 
onstant time: we only have to 
hange a few pointers. As an exer
ise, write a programthat implements this rotation, given a pointer to node m.D.4 It keeps the height of m equal to that node's height before the insertion of the new node, namely,height h+ 2. 4



As we already remarked, the imbalan
e shown in Figure 1(b) 
an be �xed in a symmetri
 way. The twosub
ases, and the transformations that rebalan
e the subtrees, 
alled \single right rotation" and \double leftright rotation", are illustrated in Figures 5 and 6 respe
tively. Remarks analogous to S.1{S.4 and D.1{D.4apply in these transformations as well. single right 00� ��
hh
mAB

(b)
T1 T2 T3

rotation
hh T3T2T1

(a)

m AB

x x
Figure 5

(b)

left right+ �� 0=+�=0 0
h

B Am
h� 1
C

T21 T3orx T22xh T1
doublerotationmAB hT3hT1 or

+=� T22T21 Ch� 1x x(a) Figure 6
5



Updating the Balan
e Fa
tors after InsertionThe balan
e fa
tors of some nodes may 
hange as a result of inserting a new node. First of all, observe thatonly the balan
e fa
tors of the new node's an
estors may need updating: For any other node i, i's left andright subtrees (and, in parti
ular, their heights) have not 
hanged and thus neither has the balan
e fa
torof i. But not all of the new node's an
estors' balan
e fa
tors may need updating. Figure 7 illustrates theissue. Insertion of key 8 to the AVL tree in 7(a) results in the AVL tree in 7(b). Note that only the balan
eof 9, 8's parent, has 
hanged. On the other hand, insertion of key 8 to the AVL tree in 7(
) results in theAVL tree in 7(d), where the balan
e fa
tors of all of 9's an
estors have 
hanged.

(d)(
)

(b)(a)
0 0 �

00
+

8

8
0 0

1 3 5
7

9 10
11 130 00

0+ 0�+ + � 00
0 00 1311

109
7

531

1 3 5
7

9 11 130 00 0�00 00 13119
7

531
Figure 7In general, let n be the new node just inserted into the tree and let p be n's parent. Further, let m bethe 
losest an
estor of p that was not balan
ed (that is, that had balan
e fa
tor � 1) before the insertionof n; if no su
h an
estor of p exists, let m be the root of the tree. (Note that m 
ould be p, if BF [p℄ 6= 0before the insertion.)Claim. Only the balan
e fa
tors of the nodes between p and m (in
luded) need to be 
hanged as a resultof the insertion of n.Justi�
ation: Consider the (0 or more) nodes that are an
estors of p and proper des
endents of m. By
hoi
e of m, all these nodes were balan
ed before the insertion of n. Thus their two subtrees had the sameheight and the insertion of n has in
reased the height of one of the subtrees; hen
e for ea
h su
h node, itsbalan
e fa
tor must be set to �1 or +1, depending on whether n was inserted to the left or right subtree,6



respe
tively. Next 
onsider node m. If m is the root and was balan
ed before the insertion, similar remarksas above apply to m: in this 
ase the insertion of n has the e�e
t of in
reasing the height of the entire tree.If m was not balan
ed before the insertion, we have two possibilities:� If m was left heavy and n was inserted to m's right subtree, or if m was right heavy and n was insertedto m's left subtree, the subtree rooted at m be
omes balan
ed as a result of the insertion (so we mustset BF [m℄ = 0), but its height does not 
hange. Therefore, neither do the heights of m's an
estors'subtrees; so the balan
e fa
tors of m's proper an
estors do not 
hange, and we 
an stop the pro
ess ofbalan
e fa
tor updating here.� If, on the other hand, m was right heavy and n was inserted to m's right subtree, or if m was left heavyand n was inserted to m's left subtree, the subtree rooted at m be
omes unbalan
ed (these are the two
ases illustrated in Figures 1(a) and 1(b) respe
tively). We 
an rebalan
e the subtree as we dis
ussedpreviously (by the appropriate type of rotation). After the rebalan
ing, however, the subtree rootedat m will have the same height as it did before the insertion of n (re
all Remarks S.4 and D.4). Thus, asargued before, the balan
e fa
tors of m's an
estors do not 
hange. Note, however, that when we rotate,the balan
e fa
tors of the rotated nodes need updating, so we must do that before stopping.yThe dis
ussion on rebalan
ing and updating the balan
e fa
tors after an insertion leads us to thefollowing outline for the AVL tree insertion algorithm.Insert(x; T )1. Tra
e a path from the root down, as in binary sear
h trees, and insert x into a new leaf at the end of thatpath (the new leaf must be in the proper position, so as to maintain the binary sear
h tree property).2. Set the balan
e fa
tor of the new leaf to 0. Retra
e the path from the leaf up towards the root andpro
ess ea
h node i en
ountered as follows:(a) If the new node was inserted in i's right subtree, then in
rease BF [i℄ by 1 (be
ause i's right subtreegot taller); otherwise, de
rease BF [i℄ by 1 (be
ause i's left subtree got taller).(b) If BF [i℄ = 0 (so the subtree rooted at i be
ame balan
ed as a result of the insertion, and its heightdid not 
hange) then stop.(
) If BF [i℄ = +2 and BF [r
hild(i)℄ = +1 then do a single left rotation on i, adjust the balan
e fa
torsof the rotated nodes (A and B in Figure 3(b)), and stop.(d) If BF [i℄ = +2 and BF [r
hild(i)℄ = �1 then do a double right left rotation on i, adjust the balan
efa
tors of the rotated nodes (A, B and C in Figure 4(b)), and stop.(e) If BF [i℄ = �2 and BF [l
hild(i)℄ = �1 then do a single right rotation on i, adjust the balan
efa
tors of the rotated nodes (A and B in Figure 5(b)), and stop.(f) If BF [i℄ = �2 and BF [l
hild(i)℄ = +1 then do a double left right rotation on i, adjust the balan
efa
tors of the rotated nodes (A, B and C in Figure 6(b)), and stop.(g) If i = root then stop.
y After a rotation, some of the rotated nodes are no longer an
estors of the inserted node; however, theymay still need to have their balan
e fa
tors updated. 7



THE ALGORITHM FOR DeleteTo delete a key x from an AVL tree T , we �rst lo
ate the node n where x is stored. (This 
an be done byusing the algorithm for Sear
h.) If no su
h node exists, we're done (there's nothing to delete). Otherwisewe have three 
ases (as with ordinary binary sear
h trees).(1) n is a leaf: Then we simply remove it. This may 
ause the tree to 
ease being height-balan
ed. So wemay need to rebalan
e it. We also have to update the balan
e fa
tors of some nodes. These issues willbe dealt with shortly.(2) n is a node with only one 
hild: Let n0 be n's only 
hild. Note that n0 must be a leaf; otherwise thesubtree rooted at n would not have been height-balan
ed before the deletion. In this 
ase we 
opy thekey stored at n0 into n and we remove n0 as in 
ase (1) (sin
e, as we just argued, it must be a leaf).(3) n has two 
hildren: Then we �nd the smallest key in n's right subtree whi
h, by the binary sear
h treeproperty, is the smallest key in T larger than the key stored in n. To �nd this key, we go to n's right
hild (whi
h exists), and we follow the longest 
hain of left 
hild pointers until we get to a node n0 thathas no left 
hild. We 
opy the key stored in n0 into n and remove n0 from the tree, as in (1), if n0 doesnot have a right 
hild either, or as in (2), if n0 has only a right 
hild.To 
omplete the algorithm we must dis
uss the 
onditions under whi
h rebalan
ing is required and howthe rebalan
ing 
an be performed. Sin
e 
ases (2) and (3) ultimately redu
e to deleting a leaf, 
ase (1) isthe only one we need to 
onsider.Rebalan
ing an AVL Tree after Deleting a LeafThe deletion of a leaf n will 
ause the tree to be
ome unbalan
ed in one of two 
ases:(a) It redu
es the height of the right subtree of a left heavy node; or,(b) It redu
es the height of the left subtree of a right heavy node.These two 
ases, illustrated in Figure 8, are symmetri
 (as are the analogous 
ases in insertion), so we willonly 
onsider the �rst. As an exer
ise, you should treat the other.
h+ 2

+�
h+ 2

(b)(a)

A m mA
h h

node to bedeletedx x
Figure 8We 
onsider 
ase (a). As with insertion there are two ways this 
ase 
ould arise, shown in Figures 9(a)and 10(a). The subtree in 9(a) 
an be rebalan
ed by means of a single right rotation, and the result of thistransformation in shown in 9(b). The \0=�" next to B in 9(a) means that this 
ase will arise if the balan
e8



T2 has height either h+ 1 or h
rotationsingle right �=0+=00=� ��

T3T2T1T3T2T1
BB

(b)(a)

A m m Ah h+ 1h+ 1 h+ 1h h
Figure 9fa
tor of B is 0 or �1 (that is, the height of T2 is h+ 1 or h). A

ordingly, the balan
e fa
tors of B and Awill be +1 or 0, and �1 or 0, after the rotation (see 9(b)).The unbalan
ed subtree of Figure 10(a) 
an be rebalan
ed by means of a double left right rotation, theresult of whi
h is shown in 10(b). The balan
e fa
tors of the nodes that have a label of the form \�= � =�" inFigure 10 depend on the heights of T21 and T22. Note that at least one of these subtrees must have height h(the other 
ould have height h�1 or h). The �rst entry of the label indi
ates the balan
e fa
tor in the eventT21 has height h� 1 and T22 has height h; the se
ond entry of the label indi
ates the balan
e fa
tor in theevent both trees have height h; and the third entry indi
ates the balan
e fa
tor when T21 has height h andT22 has height h� 1. left rightdouble

At least one of T21 and T22 has height h
0=0=+�=0=0 0

+=0=�+ ��
h� 1 T22T21
C

T22T21 C
rotation

T3T1T3T1
BB

(b)(a)

A m m A
hh� 1

hh h h
Figure 10The above two transformations have the following properties.1. They rebalan
e the subtree rooted at m (so the subtree be
omes height-balan
ed again).9



2. They maintain the binary sear
h tree property.3. They 
an be done in 
onstant time by simply manipulating a few pointers. As an exer
ise, writeprograms that implement the rotations of Figures 9 and 10, given a pointer to m.4. They may de
rease the height of the subtree rooted at m, 
ompared to the height of the subtree beforethe deletion.Compare 4 with remarks S.4 and D.4 about rotations to restore balan
e in insertions. The di�eren
e isimportant: In the insertion algorithm just one rotation always rebalan
es the subtree, and, by maintainingthe height of that subtree, it rebalan
es the entire tree. In the deletion algorithm the rotation balan
esthe subtree, but sin
e the height is de
reased, the balan
e fa
tor of nodes higher up (
loser to the root)may 
hange as a result | so we may have to go on rotating subtrees all the way up to the root in orderto rebalan
e the entire tree. Thus in deletion we may have to do as many as O(logn) rotations. (That'sa

eptable though, be
ause ea
h one takes only 
onstant time! We will say more about the 
omplexity ofoperations shortly.)Updating the Balan
e Fa
tors after Deleting a LeafWe must also address the question of how the deletion of a leaf a�e
ts the balan
e fa
tors of its an
estors(
learly, it doesn't a�e
t the balan
e fa
tors of other nodes).Let n be the deleted leaf and let p be its parent. We tra
e the path from p ba
k to the root and wepro
ess ea
h node i we en
ounter on the way as follows:� If i was balan
ed before the deletion (so BF [i℄ = 0) then the left and right subtrees of i had the sameheight. The removal of n shortened one of them (so i's balan
e fa
tor must be updated), but the heightof the subtree rooted at i after the deletion remains the same as before it. This means that the deletionof n does not a�e
t the balan
e fa
tors of i's proper an
estors. So, in this 
ase, all we have to do isin
rease BF [i℄ by one if n was in i's left subtree (be
ause then the deletion made the right subtree of italler than the left), or de
rease BF [i℄ by one if n was in i's right subtree (be
ause then the deletionmade the left subtree of i taller than the right). After this, we 
an stop the pro
ess of updating balan
efa
tors.� If i was right or left heavy before the deletion (BF [i℄ = � 1), we again update BF [i℄ as above. If thisbalan
es node i, the deletion of n shortened one of the two subtrees of i, so we go up the path to 
onsiderthe next node. Otherwise, the in
rease or de
rease of BF [i℄ by one 
auses the subtree rooted at i tobe
ome (height) unbalan
ed (BF [i℄ be
omes � 2). In this 
ase we need to rebalan
e the subtree by theappropriate rotation, as dis
ussed previously. If the rotation 
auses the height of i to de
rease 
omparedto its height before the dele
tion (see Remark 4 above), the pro
ess of updating balan
e fa
tors and,possibly, rotating, must 
ontinue with i's parent. Otherwise, the rotation leaves the height of i the sameas it was before the deletion, and therefore the pro
ess stops at i.� Finally, if the pro
ess propagated all the way to the root (i = root) we 
an stop.From this dis
ussion you should be able to distill the outline of an algorithm for AVL tree deletion.WORST CASE TIME COMPLEXITY FOR Sear
h, Insert, DeleteTheorem. (Adelson-Velski and Landis) The height of an AVL tree with n nodes is at most 1:44 log2(n+2).Proof: Let Th be a height-balan
ed tree of height h with the minimum possible number of nodes, and letnh be that number of nodes. Sin
e Th is height-balan
ed, one of its left subtrees must have height h� 1 andthe other height h� 1 or h� 2. Sin
e we want Th to have the minimum number of nodes, we may assumethat one of its subtrees is Th�1 and the other is Th�2. Thus, the number of nodes in Th is equal to thenumber of nodes in Th�1 plus the number of nodes in Th�2 plus one (for the root); that is,nh = nh�1 + nh�2 + 1:10



Thus n0 = 1, n1 = 2, n2 = 4, n3 = 7, n4 = 12, and so on. Comparing this with the sequen
e of Fibona

inumbers we see that, in general, nh = Fh+3 � 1 (where Fh is the hth Fibona

i number).y From the theoryof Fibona

i numbers we know that Fh > (�h=p5) � 1, where � = (1 + p5)=2z (if interested in this andother results on Fibona

i numbers, see Knuth, The Art of Computer Programming, Vol. 1 (FundamentalAlgorithms), pp. 78{83.)Thus for the number n of nodes in any AVL tree of height h we must have:n � nh = Fh+3 � 1 > ��h+3p5 �� 2:Therefore, h < log�((n+ 2)p5)� 3;so h < � 1log2�� � (log2p5 + log2(n+ 2))� 3;from whi
h the theorem follows by arithmeti
.In the worst 
ase, the algorithms for Sear
h, Insert, and Delete have to pro
ess all nodes in apath from the root to a leaf. The above theorem says that this path must involve at most O(logn) nodes.Pro
essing a node (be it just 
omparing the key stored in it to a key we are sear
hing for, updating thebalan
e fa
tor, or performing a rotation on that node) takes 
onstant time. Thus all these algorithms takeO(logn) time in the worst 
ase.

y The ith Fibona

i number is de�ned indu
tively as follows: F1 = F2 = 1, and for i > 2, Fi = Fi�1+Fi�2.z � is known as the \golden ratio". 11


