
Summer 2006 Final Examination — Marking Scheme CSC 209 H1 Y

UNIVERSITY OF TORONTO
Faculty of Arts and Science

AUGUST 2006 EXAMINATIONS

CSC 209 H1 Y

Duration — 3 hours

Examination Aids: One letter sized (8.5” × 11”) sheet of paper
No electronic aids allowed: no cell phones, calculators, computers, etc.

Student Number:

Last (Family) Name(s): SOLUTIONS

First (Given) Name(s):

Do not turn this page until you have received the signal to start.
(In the meantime, please fill out the identification section above,

and read the instructions below carefully.)

This term test consists of 8 questions on 14 pages (including this
one). The last page includes C function prototypes and sh shell
usage notes that might be useful: you may detach and keep this
sheet. When you receive the signal to start, please make sure that
your copy of the test is complete.

Answer each question directly on the test paper, in the space pro-
vided. If you need more space for one of your solutions, indicate
clearly the part of your work that should be marked and which ques-
tion it answers.

You do not need to include the “#!” line in Bourne shell scripts
you are asked to write. In C programs, you do not need to add the
“#include” lines, nor do error checking unless the question requires
it or the program would not function correctly given valid input
without error checking.

Though you should attempt to write programs using correct syn-
tax, minor syntactical errors will not be penalized.

Marking Guide

1: /10

2: /16

3: / 8

4: / 8

5: / 6

6: /10

7: / 8

8: /22

TOTAL: /88

Good Luck!

Total Pages = 14 Page 1 cont’d. . .

Summer 2006 Final Examination — Marking Scheme CSC 209 H1 Y

Question 1. True or false. [10 marks]

Part (a) [5 marks]

Circle the correct answer for the questions below (1 mark each).

TRUE FALSE A shell is a user’s interface to the Unix system.

TRUE FALSE The Unix operating system (kernel) manages access to the com-
puter’s hardware.

TRUE FALSE System function calls are a C program’s interface to the Unix kernel
and the computer’s hardware.

TRUE FALSE Finding the length of a string in C is a good example of a system
function call.

TRUE FALSE The term “Standard C Library” commonly refers to a set of 5
essential reference books that explain how to use the C program-
ming language.

Part (b) [5 marks]

Circle the correct answer for the questions below (1 mark each).

TRUE FALSE In C, with the declaration int a[10], the type of a is int *.

TRUE FALSE The fork() function (or a function that calls fork()) is the only
way a new process can be created by a C program.

TRUE FALSE The exec family of functions allow us to run another program tem-
porarily and return back to running our original program.

TRUE FALSE Unrelated processes can communicate with each other using signals.

TRUE FALSE Sockets allow programs on different machines to communicate with
each other.

Student #: Page 2 of 14 cont’d. . .

Summer 2006 Final Examination — Marking Scheme CSC 209 H1 Y

Question 2. Short answer. [16 marks]

Part (a) [2 marks]

Write a Bourne shell (sh) command that outputs the product of 209 and 369. Use as few processes as
possible.

expr 209 * 369

• −1 marks for correct answer using extra processes (eg., backquotes, echo)

Part (b) [2 marks]

Write a Bourne shell (sh) command that outputs the number of different settings of default shells being
used on CDF. Hint: the default shell is the 7th “:”-delimited field in /etc/passwd. The programs sort
and uniq may also be useful.

cut -d : -f 7 /etc/passwd | sort | uniq | wc -l

Part (c) [2 marks]

Write C statement(s) to allocate space for an array of 5 signed integers such that the space is automatically
deallocated when it goes out of scope.

int a[5];

Part (d) [2 marks]

Write C statement(s) to allocate space for an array of n signed integers, where n is a variable of type int.

int *p = malloc(n*sizeof(int));

Part (e) [2 marks]

Write an equivalent expression in C for the expression “*(a + 3) = 10;” where a is declared as int a[5];.

a[3] = 10;

Student #: Page 3 of 14 cont’d. . .

Summer 2006 Final Examination — Marking Scheme CSC 209 H1 Y

Question 2. (continued)

Part (f) [3 marks]

Suppose I have two processes communicating over a pair of pipes (one pipe for each direction). Pro-
cess A sends a character to process B using fprintf(outfd, "%c", c) which process B reads with
fscanf(infd, "%c", &c). Process B should then reply with a character sent to process A using sim-
ilar code. The pipes and file descriptors are correctly set up.

The problem is that they both stop running in the middle of this code and never proceed to or complete
the “reply” phase. What could be an explanation for this problem?

Sample Solution

Buffering: perhaps the fprintf() output is being line or block buffered and is never being sent
to the kernel for output to the pipe.

Describe briefly in English one way to fix this problem (you do not have to write the code).

There are many possible solutions:

• Use low-level I/O functions like write() that don’t use buffering
• Flush the outfd buffer using fflush() following the fprintf() call
• Turn off buffering on the pipe file pointers using setbuf()

Marking Scheme:

• 2 marks for identifying a reasonable/correct possible problem
• 1 mark for identifying a correct way to correct the mentioned problem (even if the problem

doesn’t apply here)

Part (g) [3 marks]

Write the body of a C function that takes a string s and a character c as arguments and returns true if c
appears in the string s, and returns false otherwise. Do not use any other functions (no library functions).

int strhas(const char *s, char c) {

Sample Solution

int strhas(const char *s, char c) {
while(*s)

if (*s == c)
return 1;

return 0;
}

Marking Scheme:

• 1 mark: correctly processing string
• 1 mark: correctly checking for c in string
• 1 mark: correctly returning true (nonzero) and false (zero)
• minus half for using library functions

Student #: Page 4 of 14 cont’d. . .

Summer 2006 Final Examination — Marking Scheme CSC 209 H1 Y

Question 3. [8 marks]

Some programs change their behaviour based on the program name with which they were called. For
example, if the grep program is executed using the program name egrep, it allows extended regular
expressions instead of the traditional regular expressions (egrep may be a hard or soft link to grep).
Another example is bash, to which sh is typically linked. If bash is executed using the name sh it operates
in a stripped-down mode (like the real old sh program).

Write a Bourne shell (sh) script called chameleon that changes its behaviour based on how it’s called. If
your script is invoked with the name foo (i.e., the user used the command line “foo” which ran your script),
you should call the shell function do_foo. If your script is invoked with the name bar, you should call
the shell function do_bar. Assume these functions exist (do not write them!). Otherwise (when invoked
with any other name), attempt to run the program of the same name in either the /bin or /usr/bin
directory (you may assume chameleon is not located in these directories). In all cases, pass all command
line arguments on to the new program or shell function.

Hints: Set your path appropriately. Recall that basename strips the directory from filenames.

Sample Solution

#!/bin/sh

prog=‘basename $0‘

if ["$prog" = "foo"]; then
do_foo "$@"

elif ["$prog" = "bar"]; then
do_bar "$@"

else
PATH=/bin:/usr/bin
"$prog" "$@"

fi

Marking Scheme:

• 1 mark: calling basename appropriately
• 2 marks: if checks to foo and bar
• 1 mark: running do_foo and do_bar

• 2 marks: executing default case
• 2 marks: sending arguments to called function/program
• deductions for failure to properly quote

Student #: Page 5 of 14 cont’d. . .

Summer 2006 Final Examination — Marking Scheme CSC 209 H1 Y

Question 4. [8 marks]

Write a Bourne shell (sh) script called termall that attempts to terminate all processes with process ID
between 1 and 10000. (Of course, it will only succeed for processes owned by the current user.) The
SIGTERM signal should be used.

Hint: Don’t kill yourself too early!

Sample Solution

#!/bin/sh

pid=1

while [$pid != 10000]; do
if [$pid != $$]; then

kill -s TERM $pid
fi
pid=‘expr $pid + 1‘

done

if [$$ -le 10000]; then
kill -s TERM $$

fi

(Note that kill defaults to sending SIGTERM if no signal specified.)

Marking Scheme:

• 3 marks: doing loop from 1 to 10000 correctly (test, expr, etc.)
• 2 marks: killing processes inside loop
• 1 mark: clear attept to use TERM signal (using TERM or SIGTERM is fine)
• 2 marks: killing self at appropriate time (0 marks here if could be killed inside loop)

Student #: Page 6 of 14 cont’d. . .

Summer 2006 Final Examination — Marking Scheme CSC 209 H1 Y

Question 5. [6 marks]

Write the body of the strunixtonet() C function below. This function should write the contents of the
string s to the socket fd, translating the string from Unix line-ending format to network line-ending format,
i.e., converting ’\n’ characters to the ’\r\n’ combination. This function does not modify s and returns
the number of bytes written to fd.

int strunixtonet(int fd, const char *s) {

Sample Solution

int strunixtonet(int fd, const char *s)
{

int b = 0;

for (; *s; s++) {
if (*s == ’\n’) {

write(fd, "\r\n", 2); /* assume success */
b+=2;

} else {
write(fd, s, 1); /* assume success */
b++;

}
}
return b;

}

Marking Scheme:

• 2 marks: walking down s to string end, not changing contents of s
• 1 mark: writing to fd correctly
• 2 marks: replacing \n with \r\n correctly
• 1 mark: returning correct number of bytes

Student #: Page 7 of 14 cont’d. . .

Summer 2006 Final Examination — Marking Scheme CSC 209 H1 Y

Question 6. [10 marks]

The “message of the day” (motd) is printed to a user after a successful login. CDF uses this to display lab
information and remind users not to eat or drink in the labs. It is typically also used to display information
about outages or changes to the systems.

Write a C program that will display the /etc/motd file without having a user log in. When a client
connects to TCP port 17 (the “Quote of the Day” port), your program should send the contents of
/etc/motd to the client (in network line-ending format as described in Question 5), then disconnect.

You may assume that the /etc/motd exists and is readable by all users. You may use the strunixtonet
function from the previous question in your solution.

Sample Solution

#define MAXLEN 1024

int main()
{

struct sockaddr_in my_addr; /* my address information */
char buf[MAXLEN]; /* read buffer for file to send */
int listenfd, clientfd;
FILE *motd;

my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(17); /* set to TCP port 17 */
my_addr.sin_addr.s_addr = INADDR_ANY;
memset(&(my_addr.sin_zero), 0, 8);

/* set up TCP server; error checking not required */
listenfd = socket(PF_INET, SOCK_STREAM, 0);
bind(listenfd, (struct sockaddr *)&my_addr,

sizeof(struct sockaddr));
listen(listenfd, 1); /* 1 backlog is plenty here */

while (1) {
clientfd = accept(listenfd, NULL, NULL); /* don’t care about client address */
/* client is connected, send the file */
/* (reopens each time in case file changes) */
motd = fopen("/etc/motd", "r");
while (fgets(buf, MAXLEN, motd)) {

strunixtonet(clientfd, buf);
}
fclose(motd);
close(clientfd);

}

return 0;
}

Student #: Page 8 of 14 cont’d. . .

Summer 2006 Final Examination — Marking Scheme CSC 209 H1 Y

Marking Scheme:

• 3 marks: setting up server correctly (socket, bind, listen, accept; small errors or omissions
in setting up my_addr should not be penalized)

• 1 mark: using htons(17) for port setting
• 2 marks: correctly accepting and handling multiple connections (in serial)
• 3 marks: correctly reading and echoing /etc/motd file using network line-endings (using
strunixtonet or not)

• 1 mark: closing any file descriptors that if left open would use up all available fds (i.e., client
fds, any files opened in the loop)

Student #: Page 9 of 14 cont’d. . .

Summer 2006 Final Examination — Marking Scheme CSC 209 H1 Y

Question 7. [8 marks]

Suppose we have a program x that only takes input from standard input. If we want the input to come
from a file instead, we could easily use shell I/O redirection. The problem comes when we want x to run
on several files: we would need to write a loop to run x with input redirected from each file.

Write a Bourne shell (sh) script called wrap that takes a program, any switches to that program (each
starting with a -), and a list of files (none start with a -) to iteratively run on. For example,

wrap x -z a b c
would run x -z three times, with input reading from a, b and c.

Hint: The command “expr -z : -” prints 1.

Sample Solution

#!/bin/sh

exec="$1"
shift
while [‘expr "$1" : -‘ = "1"]; do

exec="$exec $1"
shift

done

while ["$1"]; do
$exec < "$1"
shift

done

Marking Scheme:

• 2 marks: appropriate use of quoting
• 1 mark: $1 is name of program to run
• 2 marks: grabbing program options and correctly composing executing command line
• 1 mark: processing filenames correctly
• 2 marks: correctly executing program for each filename

Student #: Page 10 of 14 cont’d. . .

Summer 2006 Final Examination — Marking Scheme CSC 209 H1 Y

Question 8. [22 marks]

You will write a program in C named cat2 that takes two command lines as arguments, executes both
commands in parallel, and combines the output of each to standard output (in a particular way, described
now). Whenever a byte of output is available from one program but not the other, it is printed to stdout.
Whenever bytes are available from both programs, a byte from the first program is printed followed by a
byte from the second program.

For example, if program a prints 5 a’s and program b prints 5 b’s, cat2 "a" "b" might output
aaabababbb.

You may assume you are given two command lines as argv[1] and argv[2], but you may not assume
that a command line can be executed successfully. If one command line cannot be executed, the behaviour
of cat2 should be identical to the cat command.

Part (a) [4 marks]

Write a high-level overview of your algorithm. Mention which system calls you use in each step. For
example, your algorithm might begin with the following line:

create two pipes

Part (b) [3 marks]

Assume you are given a function char **break_into_args(char *s) that takes a command line string
and returns a pointer to an argv array representing this command line.

Write the C code the child process should execute to run the command line passed in as s. Assume all
file descriptors are already set up for you. Remember that the execvp call is not guaranteed to succeed!

void do_child(char *s) {

Sample Solution

char **args = break_into_args(s);
execvp(args[0], args);
perror("exec");
exit(1);

}

Student #: Page 11 of 14 cont’d. . .

Summer 2006 Final Examination — Marking Scheme CSC 209 H1 Y

Question 8. (continued)

Part (c) [7 marks]

Write the C code for the first part of the main function. You should not do any reading or writing, but
should do everything up to that point. The child processes should execute the do_child function with an
appropriate argument at the appropriate time. Make sure you close any unused file descriptors.

You may use the comment “/* now do likewise for second child */” to replace the second fork
call and reduce how much you must write.

int main(int argc, char **argv)
{

Sample Solution

int pa[2], pb[2];

pipe(pa);
pipe(pb);

if (!fork()) {
/* child a */
close(pb[0]);
close(pb[1]);
close(pa[0]);
dup2(pa[1], STDOUT_FILENO);
do_child(argv[1]);

}
if (!fork()) {

/* child b */
close(pa[0]);
close(pa[1]);
close(pb[0]);
dup2(pb[1], STDOUT_FILENO);
do_child(argv[2]);

}
close(pa[1]);
close(pb[1]);

Marking Scheme:

• 1 mark: calling pipe appropriately
• 1 mark: declaring variables correctly
• 1 mark: forking appropriately
• 1 mark: child closing unused pipe fds
• 1 mark: child calling dup2
• 1 mark: child calling do_child
• 1 mark: parent closing unused ends of pipes

/* postconditions: Child processes have been started, all unused file descriptors
* have been closed. Ready to start reading and echoing! */

Student #: Page 12 of 14 cont’d. . .

Summer 2006 Final Examination — Marking Scheme CSC 209 H1 Y

Question 8. (continued)

Part (d) [8 marks]

Write the C code the parent will execute to read output from the child processes and output to stdout such
that whenever a byte of output is available from one program but not the other, it is printed to stdout,
and whenever bytes are available from both programs, a byte from the first program is printed followed by
a byte from the second program. Hint: Use read to read one byte at a time.

/* preconditions: Child processes have been started, file descriptors are set up
* properly. Ready to read from fd’s ________ and ________ to echo to stdout. */

Sample Solution

char c;
int numopen = 2;
int maxfdp1 = (pa[0] > pb[0] ? pa[0] : pb[0]) + 1;
fd_set allset, rset;
FD_ZERO(&allset);
FD_SET(pa[0], &allset);
FD_SET(pb[0], &allset);
while (numopen > 0) {

rset = allset;
select(maxfdp1, &rset, NULL, NULL, NULL);
if (FD_ISSET(pa[0], &rset)) {

if (read(pa[0], &c, 1))
putchar(c);

else {
close(pa[0]);
FD_CLR(pa[0], &allset);
numopen--;

}
}
if (FD_ISSET(pb[0], &rset)) {

if (read(pb[0], &c, 1))
putchar(c);

else {
close(pb[0]);
FD_CLR(pb[0], &allset);
numopen--;

}
}

}

return 0;

Student #: Page 13 of 14 cont’d. . .

Summer 2006 Final Examination — Marking Scheme CSC 209 H1 Y

Marking Scheme:

• 1 mark: initializing fd_set appropriately
• 1 mark: setting maxfdp1 to larger fd + 1
• 1 mark: select call appropriate
• 1 mark: FD_ISSET test to read from only ready fds
• 1 mark: reading from child process
• 1 mark: removing fd from fd_set on EOF
• 2 mark: general correctness / reasonable approach / exiting from loop

Student #: Page 14 of 14 End of Marking Scheme

