
1

Signals

Haviland – Ch. 6

2

SignalsSignals

• Unexpected/unpredictable asynchronous
events
– floating point error
– death of a child
– interval timer expired (alarm clock)
– control-C (termination request)
– control-Z (suspend request)

• Events are called interrupts
• When the kernel recognizes an event, it

sends a signal to the process.
• Normal processes may send signals.

3

What are signals for?What are signals for?

• When a program forks into 2 or more
processes, rarely do they execute
independently.

• The processes usually require some form of
synchronization, often handled by signals.

• To transfer data between processes, we will
use pipes and sockets (coming soon).

• Signals are generated by
– machine interrupts
– the program itself, other programs or the user.

4

Software InterruptsSoftware Interrupts

• <sys/signal.h> lists the signal types on CDF.
• “man 7 signal” (“man 5 signal” on Solaris)

gives some description of various signals
– SIGTERM, SIGA BRT, SIGKI LL

– SIGSEGV, SIGB US

– SIGSTOP, SIGC ONT

– SIGCHLD

– SIGPI PE

– SIGUSR1, SIGU SR2

5

Signal handlersSignal handlers

• When a C program receives a signal, control
is immediately passed to a function called a
signal handler.

• The signal handler function can execute
some C statements and exit in 3 different
ways:
– return control to the place in the program which

was executing when the signal occurred.
– return control to some other point in the program.
– terminate the program by calling exit.

6

Default actionsDefault actions

• Each signal has a default action:
– terminate
– stop
– ignore

• The default action can be changed for
most signal types using the
si gacti on() function. The
exceptions are SIGKILL and SIGSTOP.

7

Signal tableSignal table
• For each process, Unix maintains a table of actions that

should be performed for each kind of signal.
• Here are a few…

CommentDefault ActionSignal

Continue if stopped.SIGCONT

Stop process.Stop (cannot ignore)SIGSTOP

Child stopped or terminated.IgnoreSIGCHLD

KillTerminate

(cannot ignore)

SIGKILL

Invalid memory reference.Terminate/Dump coreSIGSEGV

Interrupt from keyboardTerminateSIGINT

8

siga ction ()siga ction ()
• Install a signal handler, act , for the signal sig .
int sigaction (int sig ,

const struct sigaction *act,
struct sigaction * oldact);

• Struct defined in <signal.h> to fill in to pass in for act .
struct sigaction {

/* SIG_DFL, SIG_IGN, or pointer to function */
void (* sa _handler)(int);

 sigset _t sa _mask; /*Signals to block during handler*/
int sa _flags; /* flags and options */

};

• You may come across various extensions, including another
field in the sigaction struct for a function to catch signals.

9

siga ction () examplesiga ction () example
in t i = 0;
/* sign al h andli ng fu nctio n */
vo i d qui t (i nt co de) {

f prin t f (st derr , "\ nI nter r upt (cod e=%d, i= %d) \n",
 code, i);

exit(1);
}
in t mai n() {

struc t sig actio n newact ;
/ * fi l l in newact * /
newact . sa_ handl er = quit ; newact . sa_fl ags = 0;
i f(si gacti on(SI GINT , &newact , NUL L) == -1) exit(1);
/ * co mpute for a whi le * /
f or(; ;)
 i f ((i ++ % 50000000) == 0)

 fpri ntf (st der r ,".") ;
}

• Run the program and try sending different signals to it.
10

Sending a signalSending a signal

• From the command line use
ki l l [- sign al] pi d [pi d] …

• If no signal is specified, kill sends the TERM
signal to the process.

• signal can be specified by the number or
name without the SIG.

• Examples:
kill -QUIT 88 83

kill -STOP 78 911

kill -9 76433 (9 == KILL)

11

Signalling between processesSignalling between processes
• One process can send a signal to another

process using the misleadingly named function
call.

ki l l(in t pi d, in t sig) ;

• This call sends the signal si g to the process
pi d

• Signalling between processes can be used for
many purposes:
– kill errant processes
– temporarily suspend execution of a process
– make a process aware of the passage of time
– synchronize the actions of processes. 12

Timer signalsTimer signals
• Three interval timers are maintained for each

process:
– SIGALRM (real-time alarm, like a stopwatch)
– SIGVTALRM (virtual-time alarm, measuring CPU time)
– SIGPROF (used for profilers)

• Useful functions to set and get timer info:
– slee p() – cause calling process to suspend.
– usle ep() – like sleep() but at a finer granularity.
– alar m() – sets SIGALRM
– paus e() – suspend until next signal arrives
– seti t imer (), getitimer ()

• sl eep() and usle ep() are interruptible by
other signals.

13

Blocking SignalsBlocking Signals

• Signals can arrive at any time.
• To temporarily prevent a signal from

being delivered we block it.
• The signal is held until the process

unblocks the signal.
• When a process ignores a signal, it is

thrown away.

14

Groups of signalsGroups of signals
• Signal masks are used to store the set of

signals that are currently blocked.
• Operations on sets of signals:
int sigemptys et (sigset_ t *set);

int sigfillse t (sigset_t *set);

int sigaddset (sigset_t * set, int signo);

int sigdelset (sigset_t * set, int signo);

int sigismemb er (const s i gset_t * set,

int signo);

15

sigp r ocmask ()sigp r ocmask ()
in t sig proc mask (i nt how,

const sigse t _t * set,
s i gset _t * oset) ;

• how indicates how the signal will be modified
– SIG_BLOCK: add to those currently blocked
– SIG_UNBLOCK: delete from those currently blocked
– SIG_SETMASK: set the collection of signals being

blocked
• se t points to the set of signals to be used for

modifying the mask
• os et on return holds the set of signals that were

blocked before the call.

