
1

Inter-process
Communication

Pipes (Haviland – Ch. 7)

2

Exchanging data between
processes

Exchanging data between
processes

• After fork() is called we end up with two
independent processes.

• We cannot use variables to communicate
between processes since they each have
separate address spaces, and separate
memory.

• One easy way to communicate is to use files.
– process A writes to a file and process B reads from

it.

• See usefiles.c example. We need to be pretty
careful.

3

BufferingBuffering

� un-buffered – output appears immediately
� stderr is not buffered

� line buffered – output appears when a full line has
been written.
� stdout is line buffered when going to the screen

� block buffered – output appears when a buffer is filled
or a buffer is flushed (on close or explicit flush).
� normally output to a file is block buffered

� stdout is block buffered when redirected to a file.

4

File Objects and File
Descriptors

File Objects and File
Descriptors

• The stdio library provides FILE objects which
handle buffering.

• Why buffering? Efficiency.

• FILE objects are built on top of file descriptors.
A file descriptor is an index into a per-process
table of open file descriptors.

• We will also use file descriptors for other
communication such as pipes and sockets.

5

File DescriptorsFile Descriptors

• Used by low-level I/O
– open(), close(), read(), write()

• declared as an integer
– int fd;

• A useful system call to convert a FILE object to a fd
int fileno(FILE *fp);

• Of course it is possible to assign a stream interface to
a file descriptor

FILE *fdopen(int fd, const char *mode);

6

Process stateProcess state

text

init. data

uninit. data

heap

stack

low address

high address

Process control block (PCB)

pc (program counter)

sp (stack pointer)

fd table

file table entry

fd 0
fd 1
fd 2
fd 3
...

file status flags

vnode pointer

current file offset

7

Producer/Consumer ProblemProducer/Consumer Problem

• Simple example: who | wc –l
• Both the writing process (who) and the

reading process (wc) of a pipeline execute
concurrently.

• A pipe is usually implemented as an internal
OS buffer.

• It is a resource that is concurrently accessed
by the reader and the writer, so it must be
managed carefully.

8

Producer/ConsumerProducer/Consumer
• Consumer blocks when buffer is empty
• Producer blocks when buffer is full
• They should run independently as far as

buffer capacity and contents permit
• They should never be updating the buffer at

the same instant (otherwise data integrity
cannot be guaranteed)

Æ Harder problem if there is more than one
consumer and/or more than one producer.

9

pipe

kernel

fd[1]fd[0]

user process

int pipe(int filedes[2])

� half-duplex
(one-way)
communication

writeread

10

What happens after fork?What happens after fork?
user process user process

kernel

fd[1]fd[0]fd[1]fd[0]

pipe

11

Direction of data flow?Direction of data flow?
parent child

kernel

fd[1]fd[0]fd[1]fd[0]

pipechild to parent
close fd[1] in parent
and fd[0] in child)

12

Direction of data flow?Direction of data flow?
parent child

kernel

fd[1]fd[0]fd[1]fd[0]

pipe parent to child
(close fd[0] in parent
and fd[1] in child)

13

Pipes and File DescriptorsPipes and File Descriptors

• A forked child inherits file descriptors from its
parent

• pipe() creates an internal system buffer and
two file descriptors, one for reading and one
for writing.

• After the pipe call, the parent and child should
close the file descriptors for the opposite
direction. Leaving them open does not permit
full-duplex communication.

14

dup2()dup2()

• Often we want the stdout of one process to
be connected to the stdin of another process.

• Set one FD to the value of another.
returnCode = dup2(oldFD, newFD);

– newFD and oldFD now refer to the same file
– if newFD is open, it is first automatically closed
– Note that dup2() refer to fds not streams

15

dup2()dup2()

newfd

oldfd

oldfd = open("file");

dup2(oldfd, newfd);

"file"

Process

16

pipe()/dup2() examplepipe()/dup2() example

/* equivalent to “sort < file1 | uniq” */
int fd[2], pid;

int filedes = open("file1", O_RDONLY);

dup2(filedes, fileno(stdin));

close(filedes);

pipe(fd);

17

pipe()/dup2() examplepipe()/dup2() example

if((pid = fork()) == 0) {/* child */

dup2(fd[1], fileno(stdout));

close(fd[0]); close(fd[1]);

execl("/usr/bin/sort", "sort", (char *) 0);

} else if(pid > 0){ /* parent */

dup2(fd[0], fileno(stdin));

close(fd[1]); close(fd[0]);

execl("/usr/bin/uniq", "uniq", (char *) 0);

} else {

perror("fork"); exit(1);

}
18

file1

parent

fd[1]

fd[0]
filedes

stdin

stdout

uniq

int filedes = open("file1", O_RDONLY);

19

parent

fd[1]

fd[0]

file1

filedes

stdin

stdout

uniq

dup2(filedes, fileno(stdin));

20

parent

fd[1]

fd[0]

file1

filedes

stdin

stdout

uniq

close(filedes);

21

parent

fd[1]

fd[0]

file1

filedes

stdin

stdout

uniq

kernel

pipe

pipe(fd);

22

parent

fd[1]

fd[0]

file1

filedes

stdin

stdout

uniq

kernel

pipe

child

fd[1]

fd[0]
filedes

stdin

stdout

sort

fork();

23

parent

fd[1]

fd[0]

file1

filedes

stdin

stdout

uniq

kernel

pipe

child

fd[1]

fd[0]
filedes

stdin

stdout

sort

dup2(fd[1], fileno(stdout));

24

parent

fd[1]

fd[0]

file1

filedes

stdin

stdout

uniq

kernel

pipe

child

fd[1]

fd[0]
filedes

stdin

stdout

sort

close(fd[0]); close(fd[1]);

25

parent

fd[1]

fd[0]

file1

filedes

stdin

stdout

uniq

kernel

pipe

child

fd[1]

fd[0]
filedes

stdin

stdout

sort

dup2(fd[0], fileno(stdin));

26

parent

fd[1]

fd[0]

file1

filedes

stdin

stdout

uniq

kernel

pipe

child

fd[1]

fd[0]
filedes

stdin

stdout

sort

close(fd[1]); close(fd[0]);

27

Reading and writing to a pipeReading and writing to a pipe

• A read on an empty pipe will block until there is
something to read.

• A write on a full pipe will block until there is more
space. (Pipes have a finite size.)

• Writing to a pipe that has been closed by the other
end will result in a SIGPIPE or “Broken Pipe”
message.

• Read will return 0 if the write end of the pipe is
closed.

28

popen() and pclose()popen() and pclose()
• popen() simplifies the sequence of:

– generating a pipe
– forking a child process
– duplicating file descriptors
– passing command execution via an exec()

• Usage:
FILE *popen(const char *command,

 const char *type);

• Example:
FILE *pipeFP;

pipeFP = popen("/usr/bin/ls *.c", "r");

29

popen()popen()

pipe

pipe

Us

Command

Command

Us

"r"

"w"

