
12

Processes

Creating and using multiple processes

13

Process StateProcess State
Only one process can be
running on a uniprocessor

A process is blocked if it
waiting for an event (I/O, signal)

A process is ready if it
could use the CPU immediately.

The scheduler decides
which of the ready
processes to run.

runningrunning

blocked or
sleeping

blocked or
sleepingreadyready

14

ForkFork
• The fork system call creates a duplicate of the currently

running program.
• The duplicate (child process) and the original (parent

process) both proceed from the point of the fork with
exactly the same data.

• The only difference is the return value from the fork call.

fork

Ch 5.2

Proc ess
A

Pr ocess
A

Pr ocess
A1

15

Fork exampleFork example

int main ()

{

 pid _t pid ;

 pid = fork() ;

 if (pid < 0) {

 perror ("fork()");

 } else if (pid > 0) {
 printf (" parent \n");

 } else { /* pid == 0 */

 printf (" child \n");

 }

 return 0;

}

16

Fork: PIDs and PPIDsFork: PIDs and PPIDs

• System call: int f ork (void)
– If fo r k() succeeds it returns the child PID to the

parent and returns 0 to the child;
– If fo r k() fails, it returns -1 to the parent (no child

is created) and sets errno

• Related system calls:
– int getpid () – returns the PID of current

process
– int getppid () – returns the PID of parent

process (ppid of 1 is 1)

17

When fork() failsWhen fork() fails

• There is a limit to the maximum number
of processes a user can create.

• Once this limit is reached, subsequent
calls to fork () return -1.

18

fork () propertiesfork () properties

• Properties of parent inherited by child:
– UID, GID
– controlling terminal
– CWD, root directory
– signal mask, environment, resource limits
– shared memory segments

• Differences between parent and child
– PID, PPID, return value from fork()
– pending alarms cleared for child
– pending signals are cleared for child

19

Fork exampleFork example
int i;

pid _t pid ;

i = 5;

printf ("%d\n", i);

pid = fork();

if (pid > 0)

i = 6; /* only parent gets here */

else if (pid == 0)

i = 4; /* only child gets here */

printf ("%d\n", i);

20

Fork ExampleFork Example

in t i; pid _t pid ;
i = 5;
pr i ntf (" %d\n" , i) ;
/* prin t s 5 * /
pi d = f ork() ;
/* pid == 67 7 */
if (pid > 0)
 i = 6;
el se (pi d == 0)
 i = 4;
pr i ntf (" %d\n" , i) ;
/* prin t s 6 * /

in t i; pid _t pid ;
i = 5;
pr i ntf (" %d\n" , i) ;

pi d = f ork() ;

if (pid > 0)
 i = 6;
else if (pid = = 0)
 i = 4;
pr i ntf (" %d\n" , i) ;
/* prin t s 4 * /

Original process (parent) Child process

/* pid == 0 * /

21

PID/PPID ExamplePID/PPID Example
#include < stdio .h>
#include <sys/types.h>
#include < unistd .h>
int main () {
 pid _t pid ;
 printf ("ORIG: PID=%d PPID=%d\n",
 getpid (), getppid ());
 pid = fork ();
 if (pid > 0)
 printf ("PARENT: PID=%d PPID=%d\n",
 getpid (), getppid ());
 else if (pid == 0)
 printf ("CHILD: PID=%d PPID=%d\n",
 getpid (), getppid ());
 return(0);
}

22

Process TerminationProcess Termination

• Orphan process:
– a process whose parent is the init process (PID 1)

because its original parent died before it did.

• Terminating a process: exi t ()

• Every normal process is a child of some
parent, a terminating process sends its parent
a SIGCHLD signal and waits for its
termination status to be accepted.

• The Bourne shell stores the termination code
of the last command in $?.

Ch 5.6

23

wait ()wait ()

• System call to wait for a child
– pid _t wait(in t *status)

• A process that calls wait() can:
– block (if all of its children are still running)
– return immediately with the termination status of a

child (if a child has terminated and is waiting for its
termination status to be fetched)

– return immediately with an error (if it doesn’t have
any child processes.)

Ch 5.7

24

ZombiesZombies

• A zombie process:
– a process that is “waiting” for its parent to

accept its return code
– a parent accepts a child’s return code by

executing wait()

– shows up as Z in ps –a

– A terminating process may be a (multiple)
parent; the kernel ensures all of its children
are orphaned and adopted by init.

25

wait and waitpidwait and waitpid
• wai t() can

– block
– return with termination status
– return with error

• If there is more than one child wait() returns
on termination of any children

• wai tpid can be used to wait for a specific child
pid.

• wai tpid also has an option to block or not to
block

26

wait and waitpidwait and waitpid
• wai tpid has an option to block or not to block
• pid_t waitpid (pi d, &statu s, option) ;

– if pi d == -1 Æ wait for any child

– if opt ion == WN OHANG Æ non-blocking

– if opt ion == 0 Æ blocking

• wai tpid (-1, &sta t us, 0);
is equivalent to wait (&sta t us);

27

Example of waitExample of wait
#inc l ude <sys / types.h>

#inc l ude <sys / wait.h>

int main () {

int statu s;

if(fork() == 0) ex i t(7); /* normal*/

wait(&sta t us); prE xit (statu s);

if(fork() == 0) abort(); /* SIGABRT*/

wait(&sta t us); prE xit (statu s);

if(fork() == 0) st atus /= 0 ; /*FPE*/

wait(&sta t us); prE xit (statu s);

return 0;

}

28

prExit.cprExit.c

#i nclud e <sy s/typ es.h >

vo i d pr Exit (i nt st atu s) {
i f(WI FEXI TED(s tatu s))

pr i ntf (" normal te r mina t ion\ n");
else if(WI FSTOPPED(stat us))

pr i ntf (" chil d sto pped, sign al no . = %d\ n",
 WSTOPSI G(st atus)) ;

else if(WI FSIGNALED(sta t us))
pr i ntf (" abno r mal t ermi natio n, "

 "si gnal no.= % d\ n" , WT ERMSIG(sta t us)) ;
}

29

ExecExec

• The exec system call replaces the program being run
by a process by a different one.

• The new program starts executing from the
beginning.

• On success, exec never returns, on failure, exec
returns -1.

Ch 5.3

exec("Y");Process A
running

program X

Process A
running

program Y

30

Exec exampleExec example
Program X
in t i = 5;

pr i ntf (" %d\n", i) ;

exec("Y ");

pr i ntf (" %d\n", i) ;

Program Y
pr i ntf (" hel l o\n") ;

31

exec propertiesexec properties

• New process inherits from calling
process:
– PID and PPID, real UID, GID
– controlling terminal
– CWD, root directory, resource limits
– pending signals
– pending alarms

32

exec ()exec ()

• Six versions exec():
ex ecl (c har * path, cha r *ar g0, …, (char *)NULL);

ex ecv (c har * path, cha r * ar gv[]) ;

ex ecle (char * path , ch ar *a r g0, …,(char *)NULL,

 char * envp []);

ex ecve (char * path name, cha r * ar gv[],

 char * envp []);

ex eclp (char * file , ch ar *a r g0, …,(char *)NULL);

ex ecvp (char * file , ch ar * ar gv []) ;

33

Processes and File
Descriptors

Processes and File
Descriptors

• File descriptors are handles to open files.
• They belong to processes not programs.
• They are a process’s link to the outside world.

34

FDs preserved across fork and execFDs preserved across fork and exec

fork()

exec("Y"); /u/ krueger / foo
/u/ krueger /bar

fd =3

fd =3

fd =8

fd =8

Ch 5.5

Process A
running

program X

Process A
running

program X

Process A
running

program Y

Process A
running

program Y

Process BProcess B

Process CProcess C

35

Initializing UnixInitializing Unix

• See “top”, “ps –aux” to see what’s running
• The only way to create a new process is to

duplicate an existing process. Therefore the
ancestor of all processes is in i t with pid = 1

• The only way to run a program is with exec

fork

exec execexec

in i tin i t in i tin i tin i tin i tin i tin i tin i tin i t

in i tin i t get tyget ty lo ginlo gin tc shtc sh

Time

36

How csh runs commandsHow csh runs commands

• When a command is typed, csh forks and then execs
the typed command.

• After the fork, file descriptors 0, 1, and 2 still refer to
stdin, stdout, and stderr in the new process.

• By convention, the executed program will use these
descriptors appropriately.

fork

exec exec

cs hcs h cs hcs hcs hcs h

cs hcs h dat edat e cs hcs h lsls

Time

fork

37

How csh runsHow csh runs
duplicate:

fork()

differentiate:
exec()

terminate:
exit()

signal

wait for child:
wait()

Process running shell
PID 34

Process running shell
PID 34

Child
process running shell

PID 35

Child
process running shell

PID 35Parent
process running shell

PID 34

Parent
process running shell

PID 34

Parent
process running shell

PID 34

Parent
process running shell

PID 34

Child
process running program

PID 35

Child
process running program

PID 35

Child
process terminated

PID 35

Child
process terminated

PID 35

