Processes

Creating and using multiple processes

12

Process State

Only one process can be

unning on a uniprocessor

blocked or

Qeeping

A process is ready If it A process is blocked if it
could use the CPU immediately. waiting for an event (1/0, signal)

The scheduler decides
which of the ready
processes to run.

13

Fork

 The fork system call creates a duplicate of the currently
running program.

 The duplicate (child process) and the original (parent
process) both proceed from the point of the fork with
exactly the same data.

 The only difference is the return value from the fork call.

Pr ocess
A

Proc ess
A

Process
Al

Int

{

main ()

pid t pid;
pid = fork()

Fork example

if(pid <0){
perror ("fork()");

} else if (

printf ("

}else{ /*

printf ("

}

return O;

pid >0){

parent \n");
pid ==0%*

child \n");

15

Fork: PIDs and PPIDs

o Systemcall:int fork (void)
— Iffo rk() succeeds it returns the child PID to the
parent and returns O to the child,

— Iffo rk() fails, it returns -1 to the parent (no child
IS created) and sets errno

 Related system calls:

—Int getpid () - returns the PID of current
process

—Int getppid () - returns the PID of parent
process (ppid of 1 is 1)

16

When fork() fails

e There is a limit to the maximum number
of processes a user can create.

e Once this limit is reached, subsequent
calls to fork () return -1.

17

fork () properties

e Properties of parent inherited by child:
— UID, GID
— controlling terminal
— CWD, root directory
— signal mask, environment, resource limits
— shared memory segments

 Differences between parent and child
— PID, PPID, return value from fork()
— pending alarms cleared for child
— pending signals are cleared for child

18

Fork example

int 1,
pid t pid;

| = 5;
printf ("%d\n", 1);
pid = fork();

if(pid >0)

| = 6; /* only parent gets here */
else if (pid ==0)

| = 4; [* only child gets here */
printf ("%d\n", 1);

19

Fork Example

Original process (parert)

Child process

nt 1, pid_t pd,;
| = 5;
printf ("%d\n",1)
[*prin ts5 */
pid =f ork() ;
[* pid ==677 *
1f (pid > 0)
| = 6;
el se(pid ==0)
1= 4
printf ("%d\n",1)
[*prin ts6 */

nt 1, pid_t pid;
| = 5;
printf (" %d\n",1)

pid = fork() ;

[pid ==0 */

if(pid >0)
1= 6;

| = 4,
printf ("%d\n",1) ;
[*prin ts4 */

elseif (pid == 0)

20

#include <

PID/PPID Example

stdio .h>

#include <sys/types.h>

#include <

unistd .h>

int main () {

pid t
printf

pid ;
("ORIG: PID=%d PPID=%d\n",
getpid (), getppid ();

pid = fork ();
if (pid >0)
printf ("PARENT: PID=%d PPID=%d\n",

else if (

getpid (), getppid ());
pid ==0)

printf ("CHILD: PID=%d PPID=%d\n",

getpid (), getppid ());

return(0);

21

Process Termination
Orphan process:

— a process whose parent is the init process (PID 1)
because its original parent died before it did.

Terminating a process: exi t ()
Every normal process is a child of some
parent, a terminating process sends its parent

a SIGCHLD signal and waits for its
termination status to be accepted.

The Bourne shell stores the termination code
of the last command in $?.

22

wait () et

o System call to wait for a child
—pid t wait(Int *status)

* A process that calls wait() can:

— block (if all of its children are still running)

— return immediately with the termination status of a
child (if a child has terminated and is waiting for its
termination status to be fetched)

— return immediately with an error (if it doesn’t have
any child processes.)

23

Zombies

A zombie process:

— a process that is “waiting” for its parent to
accept its return code

— a parent accepts a child’s return code by
executing wait()

—showsupasZinps —a

— A terminating process may be a (multiple)
parent; the kernel ensures all of its children
are orphaned and adopted by Init.

24

wait and waitpid

wal t() can

— block

— return with termination status

— return with error

If there is more than one child wait() returns
on termination of any children

wal tpid can be used to wait for a specific child
pid.

wal tpid also has an option to block or not to

block

25

wait and waitpid

 wal tpid has an option to block or not to block
e pid_t waitpid (pi d, &statu s, option)

—if pid ==-1 > wait for any child
—1f option==WN OHANG > non-blocking
— 1f option == > Dblocking

e wal tpid (-1, &sta tus, O0);
IS equivalentto wait (&sta t us);

26

Example of wait

#inc | ude <sys /types.h>
#inc | ude <sys [/ wait.h>
int nmain () {

Int statu s;

If(fork() == 0) exit(7); [* normal*/
wait(&sta tus); prExit (statu s);

If(fork() == 0) abort(); [* SIGABRT?*/
wait(&sta tus); prExit (statu s);

If(fork() == 0) status/=0 ; /*FPE*

wait(&sta tus); prExit (statu s);
return O;

prexit.c

#i nclud e <sys/typ es.h >
void prExit (int status)/{
| f(WFEXITED(statu s))
printf ("normal termination\ n");
elseif(W FSTOPPEQ(stat us))
printf ("chil d sto pped,sign alno .=%d\n",
WETOPS G(st atus)) ;
elseif(W FSIGNALED(status))
printf ("abnormal termi natio n,"
"si gnhal no.=% d\ n", WT ERMSI@sta t us)) ;

28

Exec @

 The exec system call replaces the program being run
by a process by a different one.

 The new program starts executing from the
beginning.

e On success, exec never returns, on failure, exec
returns -1.

Process A
running

program X

Process A
running

program Y

exec("Y");

29

Exec example

Program X

nt 1= 5;

printf ("%d\n",1);
exec("Y ");

printf ("%d\n",1);

Program Y
printf ("hello\n");

30

exec properties

 New process inherits from calling
pProcess:

— PID and PPID, real UID, GID

— controlling terminal

— CWD, root directory, resource limits
— pending signals

— pending alarms

31

e Six versions exec():
execl (c har* path, cha
path, cha

execv(c har*
execle (char

char
execve (char

char
execlp (char
execvp (char

exec ()

* path

*envp []);
* path name, char *ar gv]],

renvp[]);

*file
*file

r *ar g0, ...,(char
r *argvl]) ;
char*a rg0, ...,(char

char*a rg0, ...,(char
char* argvl]);

*INULL):

*INULL,

*INULL):

32

Processes and File
Descriptors

* File descriptors are handles to open files.
 They belong to processes not programs.
 They are a process’s link to the outside world.

33

FDs preserved across fork and exec

exec("Y");

Process A
running
program X

Process B

fd =3

fork() /u/ krueger /bar
/ul krueger [/ foo
fd =8
fd =3
Process A
running
program Y

Initializing Unix

Time —»

See “top”, “ps —aux” to see what'’s running

The only way to create a new process is to
duplicate an existing process. Therefore the
ancestor of all processesisin it with pid=1

The only way to run a program is with exec

35

How csh runs commands

fork fork

Time —»

« When a command is typed, csh forks and then execs
the typed command.

o After the fork, file descriptors 0, 1, and 2 still refer to
stdin, stdout, and stderr in the new process.

e By convention, the executed program will use these
descriptors appropriately.

36

How csh runs

Process running shell duplicate:
PID 34 fork()
Child
process running shell
Parent PID 35

differentiate:
exec()

process running shell
PID 34

wait for child: Child
wait() Process running program
Parent PID35
process running shell terminate:
PID 34 exit()
Child
signal process terminated
PID 35

37

