Processes

Creating and using nultiple processes

12

Fork

» The fork system call creates a duplicate of the currently
running program.

e The duplicate (child process) and the original (parent
process) both proceed from the point of the fork with
exactly the same data.

* The only difference is the return value from the fork call.

Process

Proc ess
A

Process
Al

Process State

Only one process can be

unning on a uniprocessor

blocked or
sleeping

The scheduler decides
which of the ready
processes to run.

A process is ready if it
could use the CPU immediately.

A process is blocked if it
waiting for an event (I/O, signal)

13

Fork example

int main ()

{
pid t pid ;
pid = fork() ;
if (pid <0){

perror ("“fork()");
}else if (pid >0){
printf (" parent \n");

Yelse{ I* pid ==0%
printf (" child \n");

}

return O;

15

Fork: PIDs and PPIDs

e Systemcall: int fork (void)

— Iffo rk() succeeds it returns the child PID to the
parent and returns 0 to the child,;

— Iffo rk() fails, it returns -1 to the parent (no child
is created) and sets errno
* Related system calls:

—int getpid () - returns the PID of current
process

—int getppid () - returns the PID of parent
process (ppid of 1 is 1)

16

fork () properties

* Properties of parent inherited by child:
— UID, GID
— controlling terminal
— CWD, root directory
— signal mask, environment, resource limits
— shared memory segments

» Differences between parent and child
— PID, PPID, return value from fork()
— pending alarms cleared for child
— pending signals are cleared for child

18

When fork() fails

e There is a limit to the maximum number
of processes a user can create.

* Once this limit is reached, subsequent
calls to fork () return -1.

17

Fork example

int i
pid t pid ;

i=5;
printf ("%d\n", i);
pid = fork();

if (pid >0)

i = 6; /* only parent gets here */
else if (pid ==0)

i = 4; /* only child gets here */
printf ("%d\n", i);

19

Fork Example

Original process (parernt)

int i; pid_t pid;
i = 5
printf ("%d\n",i)
*prin ts5 */
pid =f ork() ;
[* pid ==677 *
if (pid > 0)
i = 6;
el se(pid ==0)
i= 4
printf ("%d\n",i)
[*prin ts6 */

Child process

int i, pid_t pid ;

I = 5;
printf ("%d\n", i)

pid = fork()

* pid ==0 */

if (pid >0)
i= 6

else if (pid ==

I = 4,
printf ("%d\n",i)
[*prin ts4 */

0)

Process Termination

* Orphan process:

20

£ Chos

=

— a process whose parent is the init process (PID 1)
because its original parent died before it did.

* Terminating a process: exi t ()

» Every normal process is a child of some
parent, a terminating process sends its parent
a SIGCHLD signal and waits for its
termination status to be accepted.

* The Bourne shell stores the termination code
of the last command in $?.

22

PID/PPID Example

#include < stdio .h>
#include <sys/types.h>
#include < unistd .h>
int main () {
pid t pid ;
printf ("ORIG: PID=%d PPID=%d\n",
getpid (), getppid ());
pid = fork ();
if (pid >0)
printf ("PARENT: PID=%d PPID=%d\n",
getpid (), getppid ());
else if (pid ==0)
printf ("CHILD: PID=%d PPID=%d\n",

getpid (), getppid ());
return(0);

wait () pCUE

e System call to wait for a child
—pid _t wait(int *status)
e A process that calls wait() can:
— block (if all of its children are still running)

— return immediately with the termination status of a
child (if a child has terminated and is waiting for its
termination status to be fetched)

— return immediately with an error (if it doesn’t have
any child processes.)

23

Zombie

« A zombie process:

— a process that is “waiting” for its parent to

accept its return code

S

— a parent accepts a child’s return code by

executing wait()
—showsupasZinps —-a

— A terminating process may be a (multiple)

parent; the kernel ensures all of its children
are orphaned and adopted by init.

wait and waitpid

24

« wai tpid has an option to block or not to block

> wait for any child

e pid_t waitpid (pi d, &statu s, option)
—if pid ==-1
—if option==WN OHANG -> non-blocking
—if option== > blocking
e wai tpid (-1, &sta tus, O0);
Is equivalentto wait (&sta t us);

26

wait and waitpid

wai t() can

— block

— return with termination status
— return with error

If there is more than one child wait() returns

on termination of any children

wal tpid can be used to wait for a specific child

pid.

wai tpid also has an option to block or not to

block

25

Example of wait

#inc | ude <sys /types.h>
#inc | ude <sys [/ wait.h>
int main (){

int statu s;

if(fork() == 0) exit(7);
wait(&sta tus); prExit (statu s);
if(fork() == 0) abort();
wait(&sta tus); prExit (statu s);
if(fork() == 0) status/=0 ;
wait(&sta tus); prExit (statu s);

return O;

27

prExit.c

#i nclud e <sys/typ es.h >
void prExit (int status){
i fl WFEXITED(statu s))
printf ("normal te rmination\ n");
elseif(W FSTCPPELQstat us))

printf ("chil d sto pped, sign alno .=%d\n",

WSTOPS G(st atus)) ;
elseif(W FSIGNALED(status))
printf ("abnormal termi natio n,"

"si gnal no.=% d\ n", WT ERMSIG(sta t us)) ;

}
Exec example
Program X
int i= b5;
printf ("%d\n",i);
exec("Y ");

printf ("%d\n",i);

Program Y
printf ("hel lo\n");

30

Exec f@'

» The exec system call replaces the program being run
by a process by a different one.

» The new program starts executing from the
beginning.

* On success, exec never returns, on failure, exec
returns -1.

A

Process
running
program X

Process A
running

program Y

exec("Y");

A 4

29

exec properties

* New process inherits from calling
process:
— PID and PPID, real UID, GID
— controlling terminal
— CWD, root directory, resource limits
— pending signals
— pending alarms

31

exec ()

» Six versions exec():

execl (c har* path,cha r *ar g0, ...,(char *)NULL);
execv(c har* path,cha r *argv[])
execle (char *path , char*a rg0, ...,(char *)NULL,

char *envpl]);
execve (char *path name, char *ar gv]],

char *envp[]);
execlp (char *file , char*a rg0, ...,(char *)NULL);
execvp (char *file , char* argv[]);

32

FDs preserved across fork and exec

Process A
running
program X

Process B

fork()
exec("Y"); /ul krueger /foo

fd =3
Process A
running
program Y

Processes and File
Descriptors

 File descriptors are handles to open files.
» They belong to processes not programs.
* They are a process’s link to the outside world.

33

Initializing Unix

fork

Time —»

» See “top”, “ps —aux” to see what's running

» The only way to create a new process is to
duplicate an existing process. Therefore the
ancestor of all processesisin it with pid =1

* The only way to run a program is with exec

35

How csh runs commands

fork fork

Time ——»

 When a command is typed, csh forks and then execs

the typed command.

» After the fork, file descriptors 0, 1, and 2 still refer to

stdin, stdout, and stderr in the new process.

» By convention, the executed program will use these

descriptors appropriately.

36

How csh runs

Process running shell duplicate:
PID 34 fork()

A

Child

PID 35

process running shell

Parent
process running shell
PID 34
wait for child:
Y wait()

Parent
process running shell
PID 34

Child

PID 35

A
Child

process terminated

PID 35

differentiate:
exec()

\

process running program

terminate:
exit()

37

