
1

Pointers and ArraysPointers and Arrays
– Recall the pointer syntax:
– char * cp t r ;

• declares a pointer to a char
• allocates space to store a pointer (to a char)

– char c = 'a ' ;
– cptr = &c;

• cptr gets the value of the address of c
• the value stored at the memory location referred to by

cptr is the address of the memory location referred
to by c ;

– * cptr = ' b' ; – dereference cptr
• the address stored at cptr identifies the memory

location where 'b' will be stored.
2

Pointers and ArraysPointers and Arrays

char * cp t r ;
char c = 'a ' ;
cptr = &c;
* cptr = ' b' ;

'a'

cptr 0x80493e0

c 0x80494dc

Symbol Table

0x80493e0

0x80494dc 'b'

0x80494dc

3

Arrays vs. PointersArrays vs. Pointers

• An array name in expression context decays
into a pointer to the zero’th element.

• E.g.
i nt a[3] = { 1, 3, 5};
i nt * p = a; p = &a[0] ;
p[0] = 10;
pr int f (" %d %d\ n" , a[0] , * p);

4

ExampleExample

int a[4] = {0 , 1, 2, 3} ;
int * p = a;
int i = 0;

for(i = 0; i < 4; i++) {
 pr i ntf ("% d\ n" , *(p + i));
}

a[0]

a[1]

a[2]

a[3]

Why does adding 1 to p move it to the next
spot for an int, when an int is 4 bytes?

0

3

2

1

(*p) ==

*(p + 1) ==

*(p + 2) ==

*(p + 3) ==

5

Pointer ArithmeticPointer Arithmetic

• Pointer arithmetic respects the type of the
pointer.

• E.g.,
i nt i [2] = { 1, 2}; char c[2] = { 'a' , 'z ' };
i nt * i p; char * cp;
i p = i ; cp = c;
* (ip + 1) += 2; *(cp + 1) = ' b' ;

(really adds 4 to ip) (really adds 1 to cp)

• C knows the size of what is being pointed at
from the type of the pointer.

6

Pointer ArithmeticPointer Arithmetic

• The array access operator [] is really only a
shorthand for pointer arithmetic + dereference

• These are equivalent in C:
a[i] == * (a + i)

• C translates the first form into the second.
– pointers and arrays are nearly the same in C!

7

Passing Arrays as ParametersPassing Arrays as Parameters
int main()
{

int i [3] = {1 0, 9, 8};
prin t f ("sum i s %d\ n", s um(i)); / * ??*/
retu r n 0;

}
int sum(What goes here?) {
}

• What is being passed to the function is the
name of the array which decays to a pointer to
the first element – a pointer of type int.

1 8

Passing Arrays as ParametersPassing Arrays as Parameters
int sum(int * a) {

int i , s = 0;
for(i = 0; i < ??; i++)

s += a[i]; / * this is l egal */
retu r n s;

}

• How do you know how big the array is?
• Remember that arrays are not objects, so knowing

where the zero’th element of an array is does not
tell you how big it is.

• Pass in the size of the array as another parameter.

sizeof (a)==4

since a is just
a pointer here

9

Array ParametersArray Parameters

 int su m(i nt * a, i nt siz e)

• Also legal is:
 int su m(i nt a[], in t si ze)

• Many advise against using this form.
– You really are passing a pointer-to-int not an array.
– You still don't know how big the array is.
– Outside of a formal parameter declaration int a[]; is

illegal
Ö i nt a; and in t a[10] ; are completely different

things

10

Multi-dimensional arraysMulti-dimensional arrays
• Remember that memory is a sequence of bytes.

 i nt a[3][3] = { {0, 1, 2} ,
{3, 4, 5} ,
{6, 7, 8} } ;

• Arrays in C are stored in row-major order
• row-major access formula

x[i][j] == * (x + i * n + j)

 where n is the row size of x

876543210

row 0 row 1 row 2

But use array
notation!

11

SummarySummary

• The name of an array can also be used
as a pointer to the zero’th element of the
array.

• This is useful when passing arrays as
parameters.

• Use array notation rather than pointer
arithmetic whenever you have an array.

