Pointers and Arrays

— Recall the pointer syntax:
— char *cptr;

Pointers and Arrays

—char ¢ ='a ';

— cptr

* declares a pointer to a char

» allocates space to store a pointer (to a char)
= &cC;

* cptr gets the value of the address of ¢

* the value stored at the memory location referred to by
cptr is the address of the memory location referred
to by c;

—*cptr = 'b'; - dereference cptr

* the address stored at cptr identifies the memory
location where 'b* will be stored.

Arrays vs. Pointers

* An array name in expression context decays
into a pointer to the zero’th element.

* E.Q.

int a[3]= {1, 3, 5}
int *p =a; p = &[0];
p[0] = 10;

print f(" % %\ n", a[0],* p);

* .
—» char cpt'r,' OX80493¢0 [OxB019Adc
—» char ¢ ='a ';
—> cptr = &c;
— *cptr ="'Db';
0x8049%4dc
Symbol Table
cptr | Ox80493e¢0
C | 0x8049%dc
Example
int af4]={0 , 1,2,3} ;
int *p=a; —
int i =0; (*p) ==al0]
for(i =0;i < 4;i++) { #(p+ 1) ==4a[1
orintt (% n" ¥p+ 1)) (p+ 1 =alll
}
*(p+ 2) ==a[2]
*(p+ 3 ==aJ
Why does adding 1 to p move it to the next
spot for an int, when an int is 4 bytes?

Pointer Arithmetic

» Pointer arithmetic respects the type of the
pointer.

 E.g.,
int i[2]= {1, 2} char c[2]= {4&a ,z'}
int *ip; char *cp;
ip =i; cp= ¢c;

“(ip + 1) +=2
(really adds 4 to ip)

* C knows the size of what is being pointed at
from the type of the pointer.

(cp + 1)= 'b';
(really adds 1 to cp)

Passing Arrays as Parameters

int main()
{
int i[38]1={1 0,098}
prin tf("'sumi s %\ n", s um()); [* 272

retu rno;
}
int sum(What goes here?){
}

* What is being passed to the function is the
name of the array which decays to a pointer to
the first element — a pointer of type int.

Pointer Arithmetic

» The array access operator [] is really only a
shorthand for pointer arithmetic + dereference

* These are equivalentin C:
afi] ==* (a+ i)

» C translates the first form into the second.
— pointers and arrays are nearly the same in C!

Passing Arrays as Parameters

int sum(int *a){
int i,s=0;
for(i =0;i < ?7;i++)
s+= ali]; [* thisis | egal */
retu rns;

apointer here

* How do you know how big the array is?

 Remember that arrays are not objects, so knowing
where the zero’'th element of an array is does not
tell you how big it is.

* Pass in the size of the array as another parameter.

8

Array Parameters

int sum(int *a, int siz e)
* Also legal is:
int sum(int a[], int size)
» Many advise against using this form.
— You really are passing a pointer-to-int not an array.
— You still don't know how big the array is.
— Outside of a formal parameter declaration int af]; is
ilegal
=int a; andint a[10]; are completely different
things

Summary

 The name of an array can also be used
as a pointer to the zero’th element of the
array.

* This is useful when passing arrays as
parameters.

« Use array notation rather than pointer
arithmetic whenever you have an array.

11

Multi-dimensional arrays

 Remember that memory is a sequence of bytes.

row O row 1 row 2
0]1][2]3]4[5]6]7]8]

int a[3]3] ={ {0, 1,2} ,
{3, 4,5} ,
{6, 7.8 };

* Arrays in C are stored in row-major order

* row-major access formula
x[i]il== *(x+ 1" n+j)
where n is the row size of x

But use array
notation!

