Static Allocation >

» Recall: static allocation
happens at compile time
based on variable

0x804957c

0x8049588 |

0x8049684

Inrt.data

....................

init.data

uninit. data

heap

definitions. 0x8049688 |
int x = 2 0x804968c¢ |/
int *b: 0x8049694 | 22? |
© 0x8049698 |: 2?7 |
int main() {}
SYMBOL TABLE: :
mai n 0x804837c /: fo
X 0x8049588 /. 04
b 0x8049688 . bss 04
a 0x804968c: . bss 10
[:))/f]fi[]]l(: 0x804837¢
Allocation 0xB04957¢
0x8049588 |
int x = 2
|t a£4]' 0x8049684
’ 0x8049688
int main() 0x804968c
b = (int *)malloc(4f*. ~ 0x8049690
b[0] = 10: stzeof (int))5 0,8049694
b[1] = 20: 0x8049698
}
0x9e15020
0x9e15024
0x9e15028

0x9e1502c

Dynamic Memory Allocation

e |n Java,
Set s; // Memory is allocated for pointer s

/ Memory is allocated for object
s = new HashSet ();

 InC,
int *a; /*Memory is allocated for pointer a */

/* Memory is allocated for a to point to */
a = (int *)malloc(10 * sizeof(int));

SYNOPSIS
#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);
void *malloc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_t size);

DESCRIPTION
malloc() allocates size bytes and returns a pointer to the allocated
memory. The memory is not cleared.

free() frees the memory space pointed to by ptr, which must have been
returned by a previous call to malloc(), calloc() or realloc(). Other-
wise, or if free(ptr) has already been called before, undefined
behaviour occurs. If ptris NULL, no operation is performed.

malloc

void *mal | oc(size_ t size);
* Some things you haven't seen yet:
void *
* A generic pointer type that can point to memory
of any type.
size_t

* A type defined by the standard library as the type
returned by si zeof .

* The type is unsi gned i nt.

NULL pointers

A function that returns a block of memory
might fail to do so, in which case it
returns a null pointer.

 NULL is a pre-processor variable defined
in iolib.h (included from stdio.h) and other
places

—itis usually defined to be 0 (no program
allocates anything at address 0x0)

malloc

» Usually cast the return value of malloc to the type you
want.
int *i = (int *)malloc(sizeof(int));
char *c = (char *)nmall oc(NAVE_SI ZE) ;

» sizeof works on types, and knows type of expressions.
double *d = (double *)mall oc(5*si zeof (*d));

» Be careful to allocate the correct number of bytes.
e« Eg.,int *I = (int *)malloc(1); /*wong*/
— allocates 1 byte, not 1 int.

De-allocating memory

int *a = (int *)malloc(10 * sizeof(int));
i nt b[10];

a = b;
* What is wrong with the last line? It compiles and
runs fine.

* We have lost the pointer to the memory region
allocated in the first line, so that space is now
tied up until the program terminates.

= Memory leak!

free()

» Before removing the last pointer to a
memory region, you must explicitly
deallocate it.

— No garbage collection in C!

int *a = (int *)malloc(10 * sizeof(int));

int b[10]; Isa NULL after the free
free(a); - No, fr ee cannot change the
a = b: value of a parameter

Arrays of pointers

* Most obvious use is to get an array of strings.

#define LEN 4
char **strs =(char **)mall oc(3*sizeof (char *));

for(i =0; i <3; i++) {
strs[i] = (char *)nmall oc(LEN);
}
strs[0] = strncpy(strs[0], "209", LEN);
strs[1l] = strncpy(strs[1], "369", LEN);

11

Dangling pointers

int *a = (int *)malloc(10 * sizeof(int));
free(a);

printf("%l\n", a[0]); /* Error */

» Dereferencing a pointer after the memory it

refers to has been freed is called a “dangling
pointer”.

» Behaviour is undefined. Might:
— appear to work

— bogus data

— program crash 10

Tips

» Use a debugger and start to figure out
what valid addresses look like.

» Check return values from library
functions.

* \Watch out for common errors:

— forgetting to allocate memory when a
pointer is declared.

12

