
1

Static AllocationStatic Allocation
• Recall: static allocation

happens at compile time
based on variable
definitions.
int x = 2;
int a[4];
int *b;

int main() {}

0x804837c main

0x804957c init.data

0x8049684 uninit. data

0x8049588 2

0x8049688 ???

0x804968c ???

0x8049698 ???

0x8049690 ???
0x8049694 ???

SYMBOL TABLE:
main 0x804837c .text f9
x 0x8049588 .data 04
b 0x8049688 .bss 04
a 0x804968c .bss 10

2

Dynamic Memory AllocationDynamic Memory Allocation

• In Java,
Set s; // Memory is allocated for pointer s

// Memory is allocated for object
s = new HashSet();

• In C,
int *a; /* Memory is allocated for pointer a */

/* Memory is allocated for a to point to */
a = (int *)malloc(10 * sizeof(int));

3

Dynamic
Allocation
Dynamic
Allocation

0x804837c main

0x804957c init.data

0x8049684 uninit. data

0x8049588 2

0x8049688 0x9e15020

0x804968c ???

0x8049698 ???

0x8049690 ???
0x8049694 ???

int x = 2;
int a[4];
int *b;

int main() {
 b = (int *)malloc(4 *
 sizeof(int));
 b[0] = 10;
 b[1] = 20;
}

0x9e15020 10
0x9e15024 20
0x9e15028
0x9e1502c

heap

4

SYNOPSIS
 #include <stdlib.h>

 void *calloc(size_t nmemb, size_t size);
 void *malloc(size_t size);
 void free(void *ptr);
 void *realloc(void *ptr, size_t size);

DESCRIPTION
 malloc() allocates size bytes and returns a pointer to the allocated
 memory. The memory is not cleared.

 free() frees the memory space pointed to by ptr, which must have been
 returned by a previous call to malloc(), calloc() or realloc(). Other-
 wise, or if free(ptr) has already been called before, undefined
 behaviour occurs. If ptr is NULL, no operation is performed.

5

mallocmalloc
void *malloc(size_t size);

• Some things you haven't seen yet:
void *

• A generic pointer type that can point to memory
of any type.

size_t

• A type defined by the standard library as the type
returned by sizeof.

• The type is unsigned int.

6

mallocmalloc

• Usually cast the return value of malloc to the type you
want.
int *i = (int *)malloc(sizeof(int));
char *c = (char *)malloc(NAME_SIZE);

• sizeof works on types, and knows type of expressions.
double *d = (double *)malloc(5*sizeof(*d));

• Be careful to allocate the correct number of bytes.
• E.g., int *i = (int *)malloc(1); /*wrong*/

– allocates 1 byte, not 1 int.

7

NULL pointersNULL pointers

• A function that returns a block of memory
might fail to do so, in which case it
returns a null pointer.

• NULL is a pre-processor variable defined
in iolib.h (included from stdio.h) and other
places
– it is usually defined to be 0 (no program

allocates anything at address 0x0)

8

De-allocating memoryDe-allocating memory
int *a = (int *)malloc(10 * sizeof(int));
int b[10];
...
a = b;

• What is wrong with the last line? It compiles and
runs fine.

• We have lost the pointer to the memory region
allocated in the first line, so that space is now
tied up until the program terminates.

ÖMemory leak!

9

free()free()

• Before removing the last pointer to a
memory region, you must explicitly
deallocate it.
– No garbage collection in C!

int *a = (int *)malloc(10 * sizeof(int));
int b[10];
...
free(a);
a = b;

Is a NULL after the free

statement?
→ No, free cannot change the
value of a parameter

10

Dangling pointersDangling pointers
int *a = (int *)malloc(10 * sizeof(int));
...
free(a);
printf("%d\n", a[0]); /* Error */

• Dereferencing a pointer after the memory it
refers to has been freed is called a “dangling
pointer”.

• Behaviour is undefined. Might:
– appear to work

– bogus data

– program crash

11

Arrays of pointersArrays of pointers

• Most obvious use is to get an array of strings.

#define LEN 4
char **strs =(char **)malloc(3*sizeof(char *));

for(i = 0; i < 3; i++) {
strs[i] = (char *)malloc(LEN);

}
strs[0] = strncpy(strs[0], "209", LEN);
strs[1] = strncpy(strs[1], "369", LEN);

12

TipsTips

• Use a debugger and start to figure out
what valid addresses look like.

• Check return values from library
functions.

• Watch out for common errors:
– forgetting to allocate memory when a

pointer is declared.

