The C Programming Language

e Cis a high-level language — structured

 Cis alow-level language — machine access

e Cis asmall language, extendable with libraries

e CIs permissive: assumes you know what
you’re doing

« Good: efficient, powerful, portable, flexible

e Bad: easy to make errors, obfuscation,
little support for modularization

Intro to C

#1 nclud e <stdio . h>

int mai n() {
int i
extern int ged(int x, int)
for (i= 0; i < 20;i ++)

print f(" gcd of 12and%dis %d\n" i, gced(1 2,)) ;
re t urn (0);
}
int ged(int x, int y){
int t
whi le (y){
t =x; x=y, y=t %y,
}
re t urn (x);

About C

Similar to Java - Java took best of C
#1 ncl ude - use declarations of functions

mal n() returns int, the exit status
Functions must be

— declared - tells compiler how to use function
— defined - creates the item

Declarations must appear before code

Basic Control Structures

e Functions - can omit ext er n declaration

e f or loop - like Java
— body Is one statement
— braces {} enclose blocks

— blocks introduce scope level

— can't mix declarations and non-declarations
efor(int 1 ... -illegalin ANSIC

More about C

e Uninitialized variables have no default
value!

* No run-time checking!
 No polymorphism (pri ntf format strings)

 No objects (C predates object-oriented)

Compile: gcc -Wall -g -0 gcd ged. c

C data types
* basic types and literals (King: Ch 7)

Int 1=38; long el = 38L,;

Int hex = 0x2a; Int oct = 033;

printft ("I =%d, el = %ld, hex = %d, oct = %d\n" ,
, el, hex, oct);

| = 38, el =38, hex =42, oct =27

double d1 =0.3; double d2 = 3.0;
double d3 = 6.02e23;
printf ("d1 = %f, d2 = %f, d3 =% e\n" ,dl, d2, d3)

d1 = 0.300000, d2 = 3.000000, d3 = 6.020000e+23

Data Type Conversion

 The expression on the right side Is converted to the
type of the variable on the left.

char c;
nt 1 =c; [*Ccisc onverted to Int */
doubled=1; [* 1lisc onverted todouble */

e This Iis no problem as long as the variable’s type Is

at least as “wide” as the expression.
charc =500; /* compil erwarnin g */
int k =di,;

prin tf("c=% c¢,k=%d\ n" c,Kk)

c = , k=0

Data Type Capacity

 What happens when the following code Is
executed?

charc =127;
int d;

prin tf("c=% d\n", c);
C++;

d= 512/c;
prin tf("c=% d,d=%d\ n" c,d)

Mixed Mode Arithmetic

double m = 5/6; [*Int/int =int */
printf("Result of 5/6 is %f\n", m);

Result of 5/6 1s 0.000000

double n = (double)5/6; /* double / int = double */
printf("Result of (double)5/6 is %f\n", n);

Result of (double)5/6 is 0.833333

double o0 = 5.0/6; [* double / int = double */
printf("Result of 5.0/6 is %f\n", 0);

Result of 5.0/6 is 0.833333

Int p = 5.0/6; /* double / int = double but then
converted to int */
printf("Result of 5.0/6 is %d\n", p);

Result of 5.0/61s 0

Logical

address ©

Memory model

Code

Static Data

« Memory Is just a seguence
of bytes

A memory location Is

Dynamic Data

identified by an address.

Urnused Logical
Address Space

2% -1

Stack

10

Example
int x = 10; ORI X
Inty;
0x8049528 y

int f(int p, int q) {

Intj=5;
< etim P*q+j;

}

int main() {
Nt 1 = X;
y = 1(, 1);
return O;

}

[Ox{fff3a30 |

¢) Oxffff3a34 p

Oxtfff3a38 q

\

main | OXffFE910 i

~

Code

10

Dynamic Data

Urused Logical
Address Space

5

10

10

10

Stack 11

Arrays

e Arrays in C are a contiguous chunk of
memory that contain a list of items of the
same type.

 If an array of ints contains 10 ints, then

the array Is 40 bytes. There Is nothing
extra.

 In particular, the size of the array Is not
stored with the array. There is no
runtime checking.

12

Arrays

X[O] 0x88681140
int X[5]; X 1 0x88681144
for (i =0;1<=5;1++){ X[2] 0x88681148

A= X[3] 0x8868114c

x:4: 0x88681150

N ? 0x88681154

« No runtime checking of array bounds
« Behaviour of exceeding array bounds is “undefined”
> program might appear to work
> program might crash
> program might do something apparently random

13

Initializing arrays

Thesiz eof
operator is

Declaration/Definition evaluated by the

int a[10];/* declare'a ' asan compiler
arrayofl 0 ints */
size of (@)== 10* sizeo f(int)== 40;

Static initialization:
char letters| 4] ={'a’, q , e , T }

Initialization loop:
forC 1 =0;I < N;i++) {
alij= O;
}

14

Arrays

 Warning: It Is the programmer's
responsibility to keep track of the size of
an array!

e Often define a maximum size.

* Pre-processor directives are used for
constants:

—E. g., #def1 ne MAXSI ZE 30

15

Pointers

« A pointer is a higher-level version of an
address.

« A pointer has type information.

Int 1;
Iint *p; [* declarep topoint toty pe int */
P =1; [derefer ence p — setw hatp points to*
p= & * Gv e p theval ue oft he address of i*/
char *c = p;War ning:i nit iali zationfro m

Inc ompatib |l e pointerty pe* /

16

Important!
Nt *p;
Memory is allocated to store the pointer

No memory is allocated to store what the
pointer points to!

Also, p Is not Initialized to a valid address
or null.

l.e., *p=1 0; iIswrong unless memory
has been allocated and p set to point to it.

17

| =109;
Int *p;
Int *qQ;
*p — i;
g= &

INnt

[*err

A picture

0x80493e0
or*/
Ox80494dc
0x80494e0
Symbol Table
i 0x80493e0
P | Ox804Hdc
g | Ox8049e0

19

0x80493e0

18

&
(Int
l,

A picture

*) md loc (sizeo f(int));

Symbol Table

| 0x80493e0

P | Ox804Hdc

q | 0x80494e0

0x80493e0

0x80494dc

0x804H4e0

0x8049530

19

0x8049530

0x380493e0

19

19

