The C Programming Language Intro to C

#i nclud e <stdio . h>

e Cis a high-level language — structured int mai n) {
. . int i
e Cis alow-level language — machine access extom in ged(int x, int y);
] . . . for (i= 0 i < 20;i ++)
« Cis a small language, extendable with libraries orint £ god of 12and%dis i ged@2)
e C is permissive: assumes you know what } re tum (0);
you're doing
« Good: efficient, powerful, portable, flexible ne ettt ot
« Bad: easy to make errors, obfuscation, wh 'et I oyt oy
little support for modularization }
re t urn (x);
1 } 2
About C Basic Control Structures
» Similar to Java - Java took best of C * Functions - can omit ext er n declaration
» #i ncl ude - use declarations of functions » for loop - like Java
 mai n() returns int, the exit status — body is one statement
« Functions must be —braces {} enclose blocks
— declared - tells compiler how to use function — blocks introduce scope level
_ defined - creates the item — can't mix declarations and non-declarations
efor(int i ... -illegalin ANSIC

» Declarations must appear before code

More about C

Uninitialized variables have no default
value!

No run-time checking!

No polymorphism (pri nt f format strings)

No objects (C predates object-oriented)

Compile: gcc -Wall -g -0 gcd ged.c

Data Type Conversion

The expression on the right side is converted to the
type of the variable on the left.

char c;
int i =c; /*cisc onverted to int *
doubled=1; /* iisc onverted todouble *

This is no problem as long as the variable’s type is
at least as “wide” as the expression.

charc =500; /* compil erwarnin g *

int k =di;

prin tf("c=% c, k=%d\

c= , k=0

n", c, k)

C data types
 basic types and literals (King: Ch 7)

int i=38; long el = 38L;

int hex =0x2a; int oct =033;

printt ("i =%d, el = %ld, hex = %d, oct =%d\n" ,
i, el, hex, oct);

i =38, el =38, hex =42, oct =27

double d1 =0.3; double d2 = 3.0;

double d3 = 6.02e23;

printf ("d1 = %f, d2 = %f, d3 =% e\n" ,dil, d2, d3)

d1 = 0.300000, d2 = 3.000000, d3 = 6.020000e+23

Data Type Capacity

« What happens when the following code is

executed?

charc =127;
int d;

prin tf("'c=% d\n", c);
C++:

d= 512 /c;

prin tf("c=% d,d=%d\ n" c,d)

Logical

0
address
- - - C d
Mixed Mode Arithmetic Memory model ode
doubl = 5/6; [*int/int = int */ .
DntCResul of 5/6 is 6 My . Static Data
Result of 5/6 is 0.000000 ¢ Memory IS JUSt a Sequence
of bytes .
double n = (double)5/6; /* double / int = double */ y Dynamic Data
printf("Result of (double)5/6 is %f\n", n); ° A memory Iocatlon |S v
Result of (double)5/6 is 0.833333 . L.
identified by an address.
doubl =5.0/6; /* double / int = double */ ;
p?ilr:tf(?Roesult of 5.0/6 is %f\r(\)"l,Jo)e; " e [ir(];&dngl cal
Result of 5.0/6 is 0.833333 dress Space
int p = 5.0/6; [* double / int = double but then T
_ ~ converted to int */ Stack
printf("Result of 5.0/6 is %d\n", p);
Result of 5.0/6 is 0 2321
9 10
0}
Exam p | e Code Arrays
ntx = 10 0x8049430 X 10
it y; e Arrays in C are a contiguous chunk of
0x8049528 ddd
it p.int) Y memory that contain a list of items of the
"}» return p * q + j; Dyramic Data same type.
it maing Unneed Logical * If an array of ints contains 10 ints, then
o Address Space the array is 40 bytes. There is nothing
V=1 Oxf{ff3a30 j 5 extra.
return O; i J Oxftfff3a34 p 10 .) .
} Oxffff3a38 q 10 * In particular, the size of the array is not
stored with the array. There is no
in | OXFff8910 i . :
main | | 19 runtime checking.

Stack 11 12

Arrays

X[0] 0x88681140

. 1144
int X[5]; X[1] 0x8868

for (i = 0; i <= 5; i++) { X[2] 0x88681148

X[i] = i*i;

[i] X[3] 0x8868114c

X[4] 0x88681150

? 0x88681154

« No runtime checking of array bounds
« Behaviour of exceeding array bounds is “undefined”
> program might appear to work
> program might crash
> program might do something apparently random

13

Arrays

« Warning: It is the programmer's
responsibility to keep track of the size of
an array!

« Often define a maximum size.

» Pre-processor directives are used for
constants:
—E. g.,#defi ne MAXSI ZE 30

15

Initializing arrays

Thesiz eof
operator is

Declaration/Definition evaluated by the

int a[10];/* declare'a ' asan compiler
array of 1 0 ints *
size of (@) == 10* sizeo f(int)== 40;

Static initialization:
char letters[4] = {a, q e, T)

Initialization loop:
for(i =0;i
afijl= 0;

< N;i++) {

}

14

Pointers

» A pointer is a higher-level version of an
address.

» A pointer has type information.

int i;
int *p; [/ declarep topoint toty pe int */
p = i; [derefer ence p — setw hatp points to*

p= & /* Gv e p theval ue oft he address of i*/
char *c = p;/*War ning:i nit iali zationfro m
inc ompatib | e pointerty pe* /

16

I nt

Important!

Memory is allocated to store the pointer

No memory is allocated to store what the
pointer points to!

Also, p is not initialized to a valid address

or null.

l.e., *p=1 0; iswrong unless memory
has been allocated and p set to point to it.

*) md loc (sizeo f(int));

17

A picture

0x80493e0 19

0x8049%4dc | 0x8049530

0x80494e0 | 0x80493e0

Symbol Table

0x80493e0

0x8049530 19

0x80494dc
0x804H4e0

19

A picture

int i =19; Ox80493e0
int *p;
int *q;
o= i, [err orY
a= & 0x80494dc
0x8049%4e0
Symbol Table
I | 0x80493e0
P | 0x80494dc
g | 0x80494e0

19

0x80493e0

18

