
1

Shells and Shell
Programming

Shells and Shell
Programming



2

ShellsShells

• A shell is a command line interpreter that is
the interface between the user and the OS.

• The shell:
– analyzes each command
– determines what actions are to be performed
– performs the actions

• Example:
wc –l file1 > file2



3

Which shell?Which shell?
• sh – Bourne shell

– Most common, other shells are a superset
– Good for programming

• csh or tcsh – command-line default on CDF
– C-like syntax
– Best for interactive use.  Not good for programming.

• bash – default on Linux (Bourne again shell)
– Based on sh, with some csh features.

• korn – written by David Korn
– Based on sh – Some claim best for programming.
– Commercial product.



4

bash  versus shbash  versus sh

• On the CDF machines, when you run
sh , you are actually running bash .

• bash is a superset of sh.

• For CSC209, you will be learning only
the features of the language that belong
to sh .



5

Common shell facilitiesCommon shell facilities
• Input-output redirection

prog < infile > outfile

ls >& outfile # csh stdout and stderr

ls > outfile 2>&1 # sh stdout and stderr

• Pipelining commands
– send the output from one command to the input of the

next.
ls  - l | wc

ps –aux | gr ep kruege r  | sort



6

Job ControlJob Control
• A job is a program whose execution has been

initiated by the user.
• At any moment, a job can be running or suspended.
• Foreground job:

– a program which has control of the terminal

• Background job:
– runs concurrently with the parent shell and does not take

control of the keyboard.

• Start a job in the background by appending &
• Commands: ^Z, jobs,  fg , bg, k i ll



7

File Name ExpansionFile Name Expansion
ls *.c
rm file[1-6].?
cd ~/bin
ls  ~ krueger
ls *.[^ oa]  - ^  in csh, ! in sh

• *  stands in for 0 or more characters
• ? stands in for exactly one character
• [1 - 6]  stands in for one of 1, 2, 3, 4, 5, 6
• [^ oa]  stands in for any char except o or a
• ~/   stands in for your home directory
• ~kr uege r  stands in for krueger’s home directory



8

ExceptionsExceptions

• ls .*  doesn’t do what you would expect
• Why?

– .*  matches .  and ..
– because .  files are hidden files, we don’t

usually want to include them in our
operations.

• How to get around this feature?
– ls  -d . *   - still catches .  and . .

– ls .??*    - misses files like .b Challenge: find
other ways.



9

Shell Programming
(Bourne shell)

Shell Programming
(Bourne shell)

• Commands run from a file in a subshell
• A great way to automate a repeated

sequence of commands.
• File starts with #!/bi n/ sh

– absolute path to the shell program
– not the same on every machine.

• Can also write programs interactively by
starting a new shell at the command line.
– Tip: this is a good way to test your shell programs



10

ExampleExample
• In a file:
#! /b i n/ sh

echo " Hello Wor l d!"

• At the command line:

skyw olf% sh
sh-2 . 05b$ ech o "Hello W orld"
Hell o World
sh-2 . 05b$ exi t
exit
skyw olf%  



11

CommandsCommands

• You can run any program in a shell by calling it as
you would on the command line.

• When you run a program like grep or l s  in a shell
program, a new process is created.

• There are also some built-in commands where no
new process  is created.

� echo

� set

� read

� exit

� test

� shif t

� wait

"man sh” to
see all builtins.



12

VariablesVariables

• local variables – spaces matter
– name=value  – assignment

– $name – replaced by value of name

– variables can have a single value or list of values.

• Single value:
bind i r ="/usr/ bin"

• List of values (separated by spaces):
sear chdirs ="~ / tests $HO ME/test2 . "



13

Example:
( $ is the default sh prompt)

Example:
( $ is the default sh prompt)

$ bindi r ="/ usr/b i n"

$ searc hdir s="~/ t ests $HO ME/te st2 . "

$ echo $sea r chdi r s

~/ t ests /u/ krueg er /te st2 .

$ echo $bin dir

/u sr/bi n



14

String ReplacementString Replacement
• Scripting languages are all about replacing

text or strings, unlike other languages
such as C or Java which are all about data
structures.

• Variables are placeholders where we will
substitute the value of the variable.

• Example:
it ers =" 1 2 3  4"

fo r i i n $it ers ; do 

echo $i

done

fo r i i n 1 2  3 4;  do 

echo $i

done
=



15

QuotingQuoting

• Double quotes inhibit wildcard replacement
only.

• Single quotes inhibit wildcard replacement,
variable substitution and command
substitution.

• Back quotes cause command substitution.

• Practice and pay attention.
Single and double quotes

are on the same key.
Back quote is often on

the same key as ~.



16

Quoting exampleQuoting example

$ ec ho Today i s date

Today is date

$ ec ho Today i s `date`

Today is Thu Sep 19 12: 28:55 EST  2002

$ ec ho "Today  is  `date` "

Today is Thu Sep 19 12: 28:55 EST  2002

$ ec ho ’ Today is  `date` ’

Today is `dat e`

" – double qu otes
’  – single qu ote
` - back quot e



17

Another Quoting ExampleAnother Quoting Example
• What do the following statements produce if the

current directory contains the following non-
executable files?

a b c

$ echo *

$ echo l s *

$ echo ` ls * `

$ echo " ls  * "

$ echo ’ ls * ’

$ echo ` *`

"  – double  q uotes

’  – single  q uote

`  -  back  quo t e



18

More on QuotingMore on Quoting

• Command substitution causes another
process to be created.

• Which is better?  What is the
difference?

sr c=` ls *.c`

or
sr c="*. c"



19

TestTest

• The built-in
command
test  is
used to
construct
conditional
statements
in Bourne
shell

And, or.-a , -o

- ne, - gt , - l t , - l e

T rue if int1 equals  int2in t 1 - eq in t 2

T rue if s tr1 not equal to str2st r 1 !=  str 2

T rue if s tr1 equals  str2st r 1 = str2

T rue if empty s tring-z stri ng

Exis ts  as  an executable file.-x file name

Exis ts  as  a writable file.-w file name

Exis ts  as  a readable file-r file name

Exis ts  as  a regular file.-f file name

Exis ts  as  a directory-d file name

test  arguments



20

Control statementsControl statements
• for loop
for color in red green blue pink

do

echo The sky is $ color

done

• if statements – if the n elif the n else fi

if test ! –d notes

then

echo not found

else

echo found

fi

if [ ! –d notes ]

then

echo not found

else

echo found

fi

=



21

More on ifMore on if

• If statements just check the return value of
the command.

• te st  is just a command that returns a value.
• E.g.,

if grep name file

then

echo found

else

echo not found

fi



22

Command line argumentsCommand line arguments

• positional parameters: variables that are
assigned according to position in a string

• Command line arguments are placed in
positional parameters:

#!/bin/ sh
echo arg1: $1
echo arg2: $2
echo name: $0
echo all: $*

giant
$ giant fee  fie fo fum

arg1: fee

arg2:  fie

name: giant

all: fee  fie fo fum



23

set and shiftset and shift
• set – assigns positional parameters to its

arguments.
$ set ` date`

$ echo " The date t oday is $2 $3 , $6"

The dat e tod ay is  May 25,  2006

• shift – change the meaning of the positional
parameters

#!/bin/ sh
while test "$1"
do
   echo $1
   shift
done

$ giant2 fee fie fo fum
fee
fie
fo
fum

giant2



24

Iterating over argumentsIterating over arguments

• Don’t use this one
unless you know that
the argument list will
always be short

• sh allows only 9
positional parameters

• The method below is
more portable.

• Use this one.

#!/bin/ sh
while test "$1"
do
   echo $1
   shift
done

#!/bin/ sh
for arg in "$@"
do
   echo $ arg
done



25

Even more on quotesEven more on quotes

• Getting the quotes right on a loop or similar
commands can be a bit tricky.

• The following 4 loops do different things:

for arg in "$ * "
do
  ec ho $arg
done

for arg in $*
do
  ec ho $arg
done

for arg in $@
do
  ec ho $arg
done

for arg in "$ @"
do
  ec ho $arg
done

Quotes mean arguments 
are all in one string.

One element for each
argument.

Quotes in the arg list 
are preserved

Does not preserve 
quotes in arg list.



26

• Since shell scripts work by text replacement, we
need a special function for arithmetic.
x=1

x=` expr  $x + 1 `

y=` expr 3 *  5` #do esn ’t work

• Can also be used for string manipulation, but we
will mostly leave text manipulation for Python.

` expr 3 \* 5` #need to escape *

exprexpr



27

String matching using exprString matching using expr

ex pr $s t rin g : $ subst r ing

• Returns the length of matching substr i ng
at beginning of stri ng.

• I.e., it returns 0 if the sub strin g is not found
at the beginning of str i ng .

• Useful in some simple cases.  If you need
anything more complicated use Python, Perl,
sed or awk.



28

readread

• read one line from standard input and
assigns successive words to the
specified variables. Leftover words are
assigned to the last variable.

#!/bin/ sh

echo "Enter your name:"

read fName lName

echo  "First: $ fName"

echo  "Last: $ lName"

$ name
Enter your name:
Alexander Graham Bell
First: Alexander
Last: Graham Bell

name



29

Reading from a fileReading from a file

whi le r ead l ine

do

ec ho $l i ne

done < $fil e

• Reads one line at a time from a file.
• $f i le  contains the name of the file that

will be read from.



30

SubroutinesSubroutines

• You can create your
own functions or
subroutines:

myfunc () {

arg1=$1

arg2=$2

echo $arg1 $globalvar

return 0

}

globalvar ="I am global"

myfunc num1 num2

• Notes:
– Arguments are passed

through positional
parameters.

– Variables defined outside
the function are visible
within.

– Return value is the value
of the last executed
command in the function.



31

NAME
       cut - remove sections from each line of files
SYNOPSIS
       cut [OPTION]... [FILE]...
DESCRIPTION
       Print  selected  parts of lines from each FILE to standard output.

       -c, --characters=LIST             output only these characters

       -d, --delimiter=DELIM            use DELIM instead of TAB for field delimiter

       -f, --fields=LIST        output only these fields

       Use  one, and only one of -b, -c or -f.  Each LIST is made up of one range,
       or many ranges separated by commas.  Each range is one of:

       N      N'th byte, character or field, counted from 1
       N-     from N'th byte, character or field, to end of line
       N-M    from  N'th  to  M'th  (included) byte, character or  field

      The  order  of  bytes,  characters or fields in the output will be identical to
       those in the input.  With no FILE, or when FILE is -, read standard input.



32

The power of pipelinesThe power of pipelines

• How many people with cdf accounts are
using the bash shell as their default shell?

• First we need to know that the default shell is
stored in / etc/ passwd

g4wang:x:10461 : 1009:Wang Guoyu:/h/ u3/g4/00/g 4wang:/var / shell/bas h

g4al i :x:10462: 1009:Ali M uhammad:/h / u3/g4/00/ g4ali:/var / shell/tcs h
g4li l y:x:10463 : 1009:Hu L i ly:/h/u3/ g4/00/g4li l y:/var/sh ell/tcsh

g4da niel:x:104 64:1009:Ch u Daniel C : /h/u3/g4/ 00/g4danie l :/var/she l l/tcsh
g4yk : x:10465:1 009:Kim Yo ungki:/h/u 3/g4/00/g4 yk:/var/sh ell/tcsh

g4ki mukr:x:104 66:1009:Ki m Uk Rae:/ h/u3/g4/00 / g4kimukr: / var/shell / bash

g4ko ngja:x:104 67:1009:Ko ng Jason:/ h/u3/g4/00 / g4kongja: / var/shell / tcsh



33

The power of pipelinesThe power of pipelines

• Solution:

• Answer: 77

• How many CDF accounts are there?
wc /etc / pas swd

• Answer: 4650

gr ep bash / etc/p asswd | wc

(almost)



34

Another problemAnother problem

• If I am logged into seawolf, how can I
find out how many people are running
bash or tcsh right now?

• Step 1: Display active processes using
ps .
– man ps

– ps  normally shows processes associated
with your terminal use the options aux  to
display all processes.



35

More on grep and pipesMore on grep and pipes

• Step 2: Extract the processes running bash.

• Solution:
• Step 3: Weed out the grep process (man

grep)
• Solution :

root      1254  0.0  0.0   2480 105 2 ?        S     200 4   0:00 / bin/bash /
g1gr os    4151   0.0  0.0   2484 153 2 pts/23   S    Jan1 3   0:00 - bash
pgri es   29010  0.0  0.0   3456 246 4 pts/0    S    09:1 2   0:00 - bash
g1gr os     865   0.0  0.0   2452 146 4 pts/7    S    10:0 8   0:00 - bash
krue ger   4228  0.0  0.0   1340  47 2 pts/6    S    11:5 7   0:00 g r ep bash

ps aux | gr ep bash | grep -v  gr ep

ps aux | gr ep bash



36

More on grep and pipesMore on grep and pipes

• Step 4: Get rid of duplicate names
– Strip out only the name
– Use cut to break each line into fields.
– Two ways to do it:

• cut - d " " -f  1

– Set the delimiter to be a space and select the first
field.

• cut - c -8

– Select characters from beginning to the 8th one



37

More on grep and pipesMore on grep and pipes

• Now get rid of duplicates

• And finally, count them…

ps aux | grep bash |grep -v grep | cut -d " " -f 1 | sort | uniq | wc -l

ps aux | grep bash |grep -v grep | cut -d " " -f 1 | sort | uniq 



38

find [ path …] [e xpression]find [ path …] [e xpression]

• Expression
– Options:

• - maxdepth level

– Tests:
• -name pattern

– Base of file name matches shell pattern pattern
• -newer file

– File was modified more recently the file.

– Actions
• -print

• -exec



39

find  and xar gsfind  and xar gs

fi nd . - name "*. j ava " - prin t

– Displays the names of all the Java files in
directories in and below the current working
directory.

xa r gs

– Build and execute command lines from
standard input.

find . -name "*. java " -print | xargs grep "import junit "


