
1

ThreadsThreads

lightweight processes

2

MotivationMotivation

• Processes are expensive to create.
• It takes quite a bit of time to switch between

processes
• Communication between processes must be

done through an external kernel structure
– files, pipes, shared memory

• Synchronizing between processes is
cumbersome.

• Is there another model that will solve these
problems?

3

ProcessesProcesses

text

data

heap

low address

high address

Stack

Process control block
 (PCB)

sp

pc
open
file

table

• Each process has its
own
– program counter
– stack

– stack pointer

– address space

• Processes may share
– open files
– pipes

4

ThreadsThreads

text

data

heap

stack 1

low address

high address

stack 2 Process control block
 (PCB)

open
file

table

• Each thread has its own
– program counter

– stack
– stack pointer

• Threads share
– address space

• variables
• code

– open files

stack 3 sp1

pc1

sp2

pc2

sp3

pc3

5

AdvantagesAdvantages

• Communication between threads is
cheap
– they can share variables!

• Threads are “lightweight”
– faster to create
– faster to switch between

• Synchronization avoids kernel

6

Threaded designThreaded design
• Several common models for threaded programs exist:

– Manager/worker: a single manager thread assigns
work to other threads, the workers. The manager
typically handles all input and parcels out work to
the workers.

– Pipeline: a task is broken into a series of
suboperations, each of which is handled in series,
but concurrently, by a different thread. Is like an
automobile assembly line.

– Peer: similar to the manager/worker model, but
after the main thread creates other threads, it
participates in the work.

7

PthreadsPthreads

• POSIX threads (pthreads) is the most
commonly used thread package on
Unix/Linux

8

pthread_createpthread_create
int pthread_c r eate (pthr ead_t * ti d,

 pthre ad_attr_t * attr ,

 void * (* func)(v oid*), vo i d * arg);

• tid uniquely identifies a thread within a process and
is returned by the function

• attr sets attributes such as priority, initial stack size
– can be specified as NULL to get defaults

• func - the function to call to start the thread
– accepts one void * argument, returns void *

• arg is the argument to func
• returns 0 if successful, a positive error code if not
• does not set errno but returns compatible error codes
• can use strer r or () to print error messages

9

pthread_joinpthread_join
in t pth r ead_join (pthr ead_ t tid ,

void **st atus)

• ti d - the tid of the thread to wait for
– cannot wait for any thread (as in wait ())

• st atus , if not NULL returns the vo i d *
returned by the thread when it terminates.

• a thread can terminate by
– returning from func

– the main() function exiting or exit() called
– pthread_ex i t ()

– pthread _ca ncel()

10

More functionsMore functions
• vo i d pt hrea d_exi t (voi d *s t atus)

– a second way to exit, returns status explicitly
– status must not point to an object local to the

thread, as these disappear when the thread
terminates.

• int pthr ead_d etac h(pth r ead_ t id) ;
– if a thread is detached its termination cannot be

tracked with pthread_ j oin ()

– it becomes a daemon thread

• pth r ead_ t pth r ead_self (void)
– returns the thread ID of the thread which called it
– often see pthr ead_detach (pthread_ self ())

11

Passing Arguments to
Threads

Passing Arguments to
Threads

pthr ead_t thr ead_ID ; i nt fd , re sult;

fd = open(" af i le ", O_RDONLY);

resu l t = pthr ead_create (&thread_ I D, NULL,

 myThrea dFcn , (vo i d *)& fd) ;
if(r esult != 0)

 pr i ntf ("Err or: % s\n" , strerror (result)) ;

• We can pass any variable (including a structure or array)
to our thread function.

• It assumes the thread function knows what type it is.
• This example is bad if the main thread alters fd later.

12

SolutionSolution

• Use malloc() to create memory for the variable
– initialize variable’s value
– pass pointer to new memory via pthread_create()
– thread function releases memory when done.

• Example:
type def struc t myArg {
 in t fd ;
 ch ar name[2 5];
} MyArg ;

int r esult;
pthr ead_t thr ead_ID ;

13

Example (cont’d)Example (cont’d)

MyArg *p = (MyArg *) mal l oc (sizeo f (MyArg)) ;
p- >f d = fd ; / * assumes fd is de f ined */
strn cpy (p- >name, "CSC20 9", 7);
resu l t = pthr ead_create (&threadI D, NULL,
 myThr eadFcn , (void *)p) ;
void * myThrea dFcn (void * p) {
 MyArg * the Arg = (MyAr g *) p;
 w r ite(theA r g- >fd , th eArg- >name, 7);
 c l ose(theA r g- >fd);
 f r ee(theAr g);
 r eturn NUL L;
}

14

Thread-safe functionsThread-safe functions
• Not all functions can be called from threads

– many use global/static variables
– new versions of UNIX have thread-safe

replacements like st rtok_r ()

• Safe:
– ctim e_r (), gmt ime_r (), l ocaltime _r (),

rand _r (), str t ok_r ()

• Not Safe:
– ctim e(), gmti me(), loca l time (),

rand (), strto k(), getho stxxx ()

• Could use semaphores to protect access but
will generally result in poor performance.

15

Pthread Mutexes
(Semaphores)

Pthread Mutexes
(Semaphores)

int pthread_mutex_init (pthread_mutex_t *mp,

const pthread_mutexattr_t * attr);

int pthread_mutex_lock (pthread_mutex_t *mp);

int pthread_mutex_trylock (pthread_mutex_t *mp);

int pthread_mutex_unlock (pthread_mutex_t *mp);

int pthread_mutex_destroy (pthread_mutex_t *mp);

• easier to use than semget () and semop()

• only the thread that locks a mutex can unlock it
• mutexes often declared as globals

16

ExampleExample
pthr ead_mutex _t myMutex ;

int status;

stat us = pthr ead_mutex_ i nit (& myMutex , NUL L);
if(s t atus != 0)

 pr intf ("Er r or: %s \n " , strerr or (status));

pthr ead_mutex _lock (& myMutex);

/* c r itical s ection her e */
pthr ead_mutex _unlock (& myMutex);

stat us = pthr ead_mutex_ destroy (& myMutex);

if(s t atus != 0)

 pr i ntf ("Err or: % s\n" , strerror (status)) ;

