
1

CSC209 ReviewCSC209 Review

Yeah!
We made it!

2

CSC209: Software tools …CSC209: Software tools …

• Unix
– files and directories
– permissions
– utilities/commands

• Shell
– programming
– quoting
– wild cards
– files

3

... and C programming and C programming ...

• C
– basic syntax
– functions
– arrays
– structs
– strings
– pointers (!!!)
– function pointers
– header files

4

… and systems programming… and systems programming

• System calls
• Files
• Processes (fork, exec)
• Inter-process Communication

– signals
– pipes
– sockets
– select

• Concurrency and Threads

5

Shell ConceptsShell Concepts

• stdin, stdout, stderr
• I/O redirection

– csh – prog >& outfi l e – stdout and
stderr to outfile

– sh – pr og > outfi l e 2>&1 – same

• Job control
• Pipes

6

Bourne shell programmingBourne shell programming
• quoting

– single quotes inhibit wildcard replacement,
variable substitution and command substitution.

– double quotes inhibit wildcard replacement only
– back quotes cause command substitution.

• variables – environment and local
– str1 ="string"

– str2 ="string"

– if t est $str1 = $str2; t hen … fi

7

Bourne shell programmingBourne shell programming

• te st –f f ilen ame – test if a file exists

• Command line arguments
– $0 = name of script, $1 .. $n = arguments

• se t assigns positional parameters to a list of
words.

• re ad – reads from stdin

• ex pr – math functions

8

Compiler vs. InterpreterCompiler vs. Interpreter

• Compiler translates whole program to object code.
– produces the most highly optimized code

• Interpreter translates one line of code at a time.
– can quickly make changes and try things out

• C – compiled

• Java – compiled to byte code, then interpreted

• Shell – interpreted

9

Software ToolsSoftware Tools

• Tools save you time and make you a
better programmer:
– editor, language choice, debugger, build

system, version control system, regression
testing, issue tracking, profiling and
monitoring.

• High-level scripting languages make it
possible to glue programs together to
do all kinds of time-saving tasks.

10

Programs as DataPrograms as Data

• Executables are just files that can be copied,
moved, searched and even edited

• Compilers are just programs that operate on
source code and produce executables

• Programming tools treat program source code
as data

• High-level programming languages give us
easier ways to operate on programs:
– automated testing, build systems, version control

11

 Programming in C Programming in C

• Memory model
– pointers are addresses with a type

• Remember that local variables are not
automatically initialized.

• Arrays
– contiguous region of memory with fixed size

• Pointers
– dereference with *
– get the address of a variable with &

12

StringsStrings

• Remember the null termination character ('\0')
• Most string functions depend on it.
• Whenever possible use the string functions

rather than re-implementing them.
• E.g., use strnc py rather than copying each

character.
• Be careful to ensure that you don't walk of the

end of a character array.

13

Dynamic memory allocationDynamic memory allocation

• memory allocated using mal loc should be
fr eed when it is no longer needed (unless you
are about to exit)

• keep a pointer to the beginning of the region
so that it is possible to free

• memory leak occurs when you no longer have
a pointer to a region of dynamically allocated
memory

14

When to use malloc?When to use malloc?

• when passing a pointer to a new region of
memory back from a function.

• when you don't know until runtime how much
space you need.

• This is a poor use of malloc:
mai n() {
 char *str 1 = mallo c(MAXLEN);
 ...
 free (str1)
 retu r n 0;
}

15

Header filesHeader files

• Header files contain function prototypes and
type definitions.

• Never #in clude a file containing functions
and variable declarations file. You will run into
trouble.

• Header files are useful when your program is
divided into multiple files.

• Use Makefiles to compile programs. Saves
typing and takes advantage of separate
compilation.

16

System CallsSystem Calls
• Perform a subroutine call into the Unix kernel
• Interface to the kernel
• main categories

– file management
– process management
– error handling
– communication

• Error handling
– system calls usually return -1 (Always check!)
– errno

17

ProcessesProcesses

• process state: running, ready, blocked
• fo r k() – creates a duplicate process

• ex ec() – replaces the program being run by
a different one.

• file descriptors maintained across fork and
exec

• process ids – getpid (), get ppid ()

18

Process TerminationProcess Termination

• Orphan process:
– a process whose parent is the init process because its

original parent died

• Zombie process:
– a process that is “waiting” for its parent to accept its

termination status.
wai t(in t *st atus) ;

r = wai t pid (pid_t pid , int *sta t us, i nt option s);

• Use macros to check the status:
– WIFEXITED , WIFSIGNALED, WEXITSTATUS

19

ThreadsThreads

• Processes have two limitations:
– it is expensive to create a new one and switch between

processes.
– processes cannot share memory (easily)

• Threads allow multiple instruction streams
(threads of execution) in a single address space
and solve both these problems.

• Thread libraries also contain higher-level
synchronization mechanisms (mutex's) and
conditional variables.

20

ConcurrencyConcurrency

• Race condition: final outcome depends on the
order in which things run.

• Producer/Consumer Problem:
– consumer should block when buffer is empty
– producer should block when buffer is full
– only one should be updating the buffer at a time

• A pipe is an example of producer/consumer

21

Inter-process Communication
(IPC)

Inter-process Communication
(IPC)

• Data exchange between process:
– message passing: files, pipes, sockets

• Limitations of files for IPC data exchange
– slow
– possibly altered by other processes

• Limitations of pipes:
– two processes must be running on the same machine
– two processes must be related

• Sockets overcome these limitations

22

Streams? File Descriptors?Streams? File Descriptors?
• Unix has two main mechanisms for managing

file access
– streams: high-level, more abstract (and portable)

• you deal with a pointer to a FILE structure, which keeps track
of info you don’t need to know

• fopen (), fprintf (), fread (), fgets ()

– file descriptors: each file identified by a small integer
(on Unix), low-level, used for files, sockets and pipes.

– Binary versus text I/O

23

SignalsSignals

• Signals are software interrupts, a way to
handle asynchronous event.

• Examples: control-C, termination of child,
floating point error, broken pipe.

• Normal processes can send signals.
• ki l l(pi d, S I G) – sent SIG to pid
• si gacti on() – install a new signal handler

for a signal
• si gproc mask () – block signals

24

SocketsSockets

• Sockets allow communication between
machines

• TCP/IP protocol – internet address, ports
• Protocol families: PF_INE T, PF_LOCAL

• Server side initialization takes 4 steps
– sock et() – initialize protocol
– bind () – initialize addresses
– list en() – initialize kernel structures for pending

connections
– acce pt() – block until a connection is received.

25

SocketsSockets

• Client initializes socket using socke t () , and
then calls co nnect () .

• Need to be wary of host byte orders.
• Communication is done by reading and

writing on file descriptors.
• Ports are divided into three categories: well-

known, registered, and dynamic (or private).
• Socket types:

– SOCK_STREAM = TCP

– SOCK_DGRAM = UDP

26

Multiplexing I/OMultiplexing I/O

• select() allows a process to block on a set of file
descriptors until one or more of them are ready.

• Read calls on a “ready” file descriptor will only block
while the data is transferred from kernel to user
space.

• Makes it easier for one process to handle multiple
sources of input.

• select() takes “file descriptor sets” as arguments

• The macros FD_SET, FD_ISSET etc. are used to
manipulate the bit set data structure.

27

File interfaceFile interface
• “Everything is a file”
• We treat all sorts of devices as if they were files,

and use the file interface (open, read, write,
close) all over the place.
– files
– directories
– pipes
– sockets
– kernel info via /proc

28

Final ExamFinal Exam

• How to study
– Look at previous exams for structure.
– Play with example code provided.

• Closed book exam except…
– Bring one hand-written 8.5”x11” sheet of paper

• double-sided (no magnifying glasses allowed)

– The exam also contains an aid sheet with
prototypes and shell info.

• published on the course web site (don’t bring it to exam!)

29

RemainderRemainder

• Check web page for office hours
• Review session

– Wednesday August 16?

• Please submit any remark requests promptly.
• All remark requests must be submitted before

the exam.

• Please verify that posted marks are correct
before the exam!

30

Unix PhilosophyUnix Philosophy

• Write programs that do one thing well.
• Write programs that work together.
• Write programs to handle text streams

because that is the universal interface.

Good luck on the final,
and have a good rest of the summer!

