CSC209 Review

Yeah!
We made it!
(D
1

CSC209: Software tools ...

e Unix

— files and directories

— permissions

— utilities/commands
e Shell

— programming

— guoting

— wild cards

— files

... and C programming ...

e C
— basic syntax
— functions
— arrays
— structs
— strings
— pointers (!
— function pointers
— header files

... and systems programming

System calls
~lles
Processes (fork, exec)

nter-process Communication
— signals

— pipes

— sockets

— select

Concurrency and Threads

Shell Concepts

stdin, stdout, stderr

/O redirection

—csh-prog >& outfi | e — stdout and
stderr to outfile

—sh—-prog > outfi | e 2>&1 - same
Job control
Pipes

Bourne shell programming

e quoting
— single quotes inhibit wildcard replacement,
variable substitution and command substitution.
— double quotes inhibit wildcard replacement only

— back guotes cause command substitution.

e variables — environment and local
— strl ="string"
— str2 ="string"
—ift est$strl = $str2; then ... fi

Bourne shell programming

te st —f filen ame-testif a file exists

Command line arguments

— $0 = name of script, $1 .. $n = arguments

set assigns positional parameters to a list of
words.

re ad — reads from stdin
expr — math functions

Compiler vs. Interpreter

Compiler translates whole program to object code.
— produces the most highly optimized code

Interpreter translates one line of code at a time.
— can quickly make changes and try things out

C — compiled
Java — compiled to byte code, then interpreted
Shell — interpreted

Software Tools

* Tools save you time and make you a
better programmer:
— editor, language choice, debugger, build
system, version control system, regression

testing, issue tracking, profiling and
monitoring.

* High-level scripting languages make it

possible to glue programs together to
do all kinds of time-saving tasks.

Programs as Data

Executables are just files that can be copied,
moved, searched and even edited

Compilers are just programs that operate on
source code and produce executables

Programming tools treat program source code
as data

High-level programming languages give us
easier ways to operate on programs:
— automated testing, build systems, version control

10

Programming in C

Memory model
— pointers are addresses with a type

Remember that local variables are not
automatically initialized.

Arrays
— contiguous region of memory with fixed size

Pointers
— dereference with *
— get the address of a variable with &

11

Strings

Remember the null termination character (\0")
Most string functions depend on it.

Whenever possible use the string functions
rather than re-implementing them.

E.g., use strnc py rather than copying each
character.

Be careful to ensure that you don't walk of the
end of a character array.

12

Dynamic memory allocation

« memory allocated using md loc should be
fr eed when it is no longer needed (unless you

are about to exit)

« keep a pointer to the beginning of the region
so that it is possible to free

« memory leak occurs when you no longer have
a pointer to a region of dynamically allocated
memory

13

When to use malloc?

when passing a pointer to a new region of
memory back from a function.

when you don't know until runtime how much
space you need.

This Is a poor use of malloc:
ma n() {
char*str 1 = nmallo c(MAXLEN);

free (strl)
retu rnoO;

}

14

Header files

Header files contain function prototypes and
type definitions.
Never #in clude a file containing functions

and variable declarations file. You will run into
trouble.

Header files are useful when your program is
divided into multiple files.

Use Makefiles to compile programs. Saves
typing and takes advantage of separate
compilation.

15

System Calls

Perform a subroutine call into the Unix kernel
Interface to the kernel

main categories

— file management

— process management
— error handling

— communication

Error handling
— system calls usually return -1 (Always check!)
— errno

16

Processes

process state: running, ready, blocked

fo rk() — creates a duplicate process
exec() - replaces the program being run by
a different one.

file descriptors maintained across fork and
exec

process ids — getpid (), get ppid ()

17

Process Termination

e Orphan process:
— a process whose parent is the init process because Iits
original parent died
e Zombie process:

— a process that is “waiting” for its parent to accept its
termination status.

wai t(int *st atus) ;
r = waitpd (pid tpid , int *sta tus, Int option S);
« Use macros to check the status:

— WIFEXITED , WIFSIGNALED WEXITSTATUS

18

Threads

e Processes have two limitations:

— It IS expensive to create a new one and switch between
processes.

— processes cannot share memory (easily)

* Threads allow multiple instruction streams
(threads of execution) in a single address space
and solve both these problems.

 Thread libraries also contain higher-level
synchronization mechanisms (mutex's) and
conditional variables.

19

Concurrency

« Race condition: final outcome depends on the
order in which things run.

* Producer/Consumer Problem:
— consumer should block when buffer is empty
— producer should block when buffer is full
— only one should be updating the buffer at a time

* A pipe Is an example of producer/consumer

20

Inter-process Communication
(IPC)

Data exchange between process:

— message passing: files, pipes, sockets

Limitations of files for IPC data exchange

— slow

— possibly altered by other processes

Limitations of pipes:

— two processes must be running on the same machine
— two processes must be related

Sockets overcome these limitations

21

Streams? File Descriptors?

e Unix has two main mechanisms for managing
file access

— streams: high-level, more abstract (and portable)

« you deal with a pointer to a FILE structure, which keeps track
of info you don’t need to know

o fopen (), fprintt (), fread (), fgets ()

— file descriptors: each file identified by a small integer
(on Unix), low-level, used for files, sockets and pipes.

— Binary versus text 1/O

22

Signals

Signals are software interrupts, a way to
handle asynchronous event.

Examples: control-C, termination of child,
floating point error, broken pipe.

Normal processes can send signals.
kill(pid,S | G) —sent SIG to pid

si gacti on() - install a new signal handler
for a signal

si gproc mask () — block signals

23

Sockets

Sockets allow communication between
machines
TCP/IP protocol — internet address, ports

Protocol families: PF_INE T, PF_LOCAL

Server side Initialization takes 4 steps
— sock et() —initialize protocol
— bind () —initialize addresses

— list en() - initialize kernel structures for pending
connections

— acce pt() - block until a connection is received.

24

Sockets

Client initializes socket using socke t () , and
then calls connect ().

Need to be wary of host byte orders.

Communication is done by reading and
writing on file descriptors.

Ports are divided into three categories: well-
known, registered, and dynamic (or private).

Socket types:
— SOCKSTREAM: TCP

— SOCK DGRAM: UDP

25

Multiplexing /O

select() allows a process to block on a set of file
descriptors until one or more of them are ready.

Read calls on a “ready” file descriptor will only block
while the data is transferred from kernel to user
space.

Makes it easier for one process to handle multiple
sources of input.

select() takes “file descriptor sets” as arguments

The macros FD SET, FD ISSET etc. are used to
manipulate the bit set data structure.

26

File interface

e “Everything is a file”
 We treat all sorts of devices as if they were files,
and use the file interface (open, read, write,
close) all over the place.
— files
— directories
— pipes
— sockets
— kernel info via /proc

27

Final Exam

 How to study
— Look at previous exams for structure.
— Play with example code provided.

e Closed book exam except...
— Bring one hand-written 8.5"x11” sheet of paper
» double-sided (no magnifying glasses allowed)

— The exam also contains an aid sheet with
prototypes and shell info.
» published on the course web site (don’t bring it to exam!)

28

Remainder

Check web page for office hours

Review session
— Wednesday August 167

Please submit any remark requests promptly.

All remark requests must be submitted before
the exam.

Please verify that posted marks are correct
before the exam!

29

e Write
e Write
e Write

Unix Philosophy

orograms that do one thing well.
orograms that work together.

programs to handle text streams

because that is the universal interface.

Good luck on the final,

and have a good rest of the summer!

30

