Inter-process
Communication

Pipes (Haviland — Ch. 7)

Buffering

o unrbuffered — output appears immediately
o stderr isnotbuffered

o line buffered — output appears when a full line has

been written.
o st dout isline buffered when going to the screen

o block buffered — output appears when a buffer is filled

or abuffer is flushed (on close or explicit flush).
o nommally output to a file is block buffered
o st dout isblock buffered when redirected to a file.

Exchanging data between
processes

After fork() is called we end up with two
independent processes.

We cannot use variables to communicate

between processes since they each have

separate address spaces, and separate

memory.

One easy way to communicate is to use files.

— process A writes to a file and process B reads from
it.

See usefiles.c example. We need to be pretty

careful.

2

File Objects and File

Descriptors

The stdio library provides FILE objects which
handle buffering.

Why buffering? Efficiency.

FILE objects are built on top of file descriptors.
A file descriptor is an index into a per-process
table of open file descriptors.

We will also use file descriptors for other
communication such as pipes and sockets.

: : Pr tat
File Descriptors 0Cess stafe

high address
 Used by low-level /O stack
— open(), close(), read(), wite() v
« declared as an integer Process control Block (PCH)
—int fd: sp (staclc pointer file table entry
« A useful system call to convert a FILE object to a fd t e (program counter »_file status flags
int fil eno(FI LE *f p) : heap fd table / current file offset
- Of course it is possible to assign a stream interface to \wiriit. data Eéz = vnode pointer
a file descrlptor. it e G
FI LE *fdopen(int fd, const char *node); -y
low address
5
Producer/Consumer Problem Producer/Consumer

* Consumer blocks when buffer is empty
* Producer blocks when buffer is full

* They should run independently as far as
buffer capacity and contents permit

* Simple example: who | wc -l
» Both the writing process (who) and the
reading process (Wc) of a pipeline execute

concurrently. '
« A pipe is usually implemented as an internal * They should never be updating the buffer at
OS buffer. the same instant (otherwise data integrity
* Itis aresource that is concurrently accessed cannot be guaranteed)
by the reader and the writer, so it must be > Harder problem if there is more than one

managed carefully. consumer and/or more than one producer.

I nt pipe(int filedes[2])

user process
o half-duplex
(one-way)
cormmurication fd[0] fd[1]
read/ \vwi te
Z pi pe j
ker nel

Direction of data flow?

par ent child

fd[0] fd[1] fd[0] fd[1]

child to parent 4—

close fd[1] in parent
and fd[0] in child)

ker nel

11

What happens after fork?

user process

f d[0]

fd[1]

user process

f d[0]

fd[1]

s

ker nel

10

Direction of data flow?

par ent

fd[0]

fd[1]

child

fd[0]

fd[1]

s

ker nel

parent to child
(close fd[0] in parent
and fd[1] in child)

12

Pipes and File Descriptors

» A forked child inherits file descriptors from its
parent

* pipe() creates an internal system buffer and
two file descriptors, one for reading and one
for writing.

 After the pipe call, the parent and child should
close the file descriptors for the opposite
direction. Leaving them open does not permit
full-duplex communication.

13

dup2()

ol dfd = open("file");

dup2()

» Often we want the stdout of one process to
be connected to the stdin of another process.

» Set one FD to the value of another.
returnCode = dup2(ol dFD, newFD);

— newFD and oldFD now refer to the same file
— if newFD is open, it is first automatically closed
— Note that dup2() refer to fds not streams

14

pi pe()/ dup2() example

/* equivalent to “sort < filel | uniqg” */
Process dup2(ol df d, newfd); int fd[2], pid;
newtd int filedes = open("filel", O RDONLY):
ol dfd dup2(filedes, fileno(stdin)):
cl ose(fil edes);

pi pe(fd);

15 16

pl pe()/ dup2() example

if((pid = fork()) == 0) {/* child */

dup2(fd[1],
cl ose(fd[0]);
execl ("/usr/bin/sort",

} else if(pid > 0){

dup2(fd[0],
close(fd[1]);
execl ("/usr/bin/uniqg",

} else {

perror("fork");

dup2(fil edes,

par ent

> fil edes
> stdin
st dout

uni q
fd[0]
fd[1]

filel

fileno(stdout));
close(fd[1]);
"sort", (char *) 0);

/* parent */

fileno(stdin));
close(fd[0]);
"uniq", (char *) 0);

exit(l);

17

fileno(stdin));

19

4>

int filedes = open("filel",

par ent

fil edes
stdin
st dout

uni g
fd[0]
fd[1]

4>

filel

close(fil edes);

par ent

fil edes
stdin
st dout

uni g
fd[0]
fd[1]

filel

O _RDONLY) ;

18

20

par ent

fil edes
» stdin
st dout

uni q
fd[0]
fd[1]

A

filel

dup2(fd[1],

par ent

fil edes
> stdin
st dout

uni g
fd[0]
fd[1]

A

pi pe(fd);

» pipe }f

ker nel

21

fileno(stdout));

filel

child
fil edes sort
stdin fd[O] |«
(bstdout fd[1]
> pipe

ker ne

23

fork();
par ent child
fil edes uniq fil edes sort
»/stdin fd[0] « stdin fd[0]
st dout fd[1] (%bstdout fd[1]
filel
> pipe
ker nel
22
close(fd[0]); close(fd[1]);
par ent child
filedes UM filedes SO
»{stdin fd[O] |= stdin fd[O]
st dout fd[1] = St dout fd[1]
filel

ker nel

24

dup2(fd[0],

fileno(stdin));

par ent child
filedes UNid filedes SOt
stdin fd[O] « stdin fd[0]
(stdout fd[1] = St dout fd[1]
filel

ker nel

25

Reading and writing to a pipe

* Aread on an empty pipe will block until there is
something to read.

» A write on a full pipe will block until there is more
space. (Pipes have a finite size.)

» Writing to a pipe that has been closed by the other

end will result in a SIGPIPE or “Broken Pipe”

message.

» Read will return O if the write end of the pipe is

closed.

27

close(fd[1]);

close(fd[0]);

par ent child
filedes Unid filedes SOt
stdin fd[0] stdin fd[O]
st dout fd[1] = St dout fd[1]
filel

ker nel

popen() and pcl ose()

e popen() simplifies the sequence of:

— generating a

— forking a child process

pipe

— duplicating file descriptors

— passing command execution via an exec()

» Usage:

FI LE *popen(const char *command,
const char *type);

* Example:

FI LE *pi peFP;
pi peFP = popen("/usr/bin/ls *.c",

T

26

28

popen()

pi pe

—» Us

pi pe

—» Conmand

29

