Signals

Haviland — Ch. 6

Signals

Unexpected/unpredictable asynchronous
events

— floating point error

— death of a child

— Interval timer expired (alarm clock)

— control-C (termination request)

— control-Z (suspend request)

Events are called interrupts

When the kernel recognizes an event, it
sends a signal to the process.

Normal processes may send signals.

What are signals for?

When a program forks into 2 or more
processes, rarely do they execute
iIndependently.

The processes usually require some form of
synchronization, often handled by signals.

To transfer data between processes, we will
use pipes and sockets (coming soon).
Signals are generated by

— machine interrupts

— the program itself, other programs or the user.

Software Interrupts

e <sys/signal.n> lists the signal types on CDF.

 “man 7 signal” (“man 5 signal” on Solaris)
gives some description of various signals
— SIGTERM, SIGA BRT, SIGKI LL

— SIGSEGV, SIGB US
— SIGSTOP, SIGC ONT
— SIGCHLD

— SIGPI PE

— SIGUSR1, SIGU SR2

Signal handlers

« When a C program receives a signal, control
IS Immediately passed to a function called a
signal handler.

e The signal handler function can execute
some C statements and exit in 3 different
ways:

— return control to the place in the program which
was executing when the signal occurred.
— return control to some other point in the program.

— terminate the program by calling exit.

Default actions

 Each signal has a default action:
— terminate
— stop
—Ignore
* The default action can be changed for

most signal types using the
si gacti on() function. The

exceptions are SIGKILL and SIGSTOP.

Signal table

 For each process, Unix maintains a table of actions that
should be performed for each kind of signal.

e Here are a few...

Signal Default Action Comment
SIGINT Terminate Interrupt from keyboard
SIGSEGV | Terminate/Dump core | Invalid memory reference.
SIGKILL | Terminate Kill

(carmot ignore)
SIGCHLD | Ignore Child stopped or terminated.
SIGSTOP | Stop (carmot ignore) Stop process.
SIGCONT Contirwe if stopped.

siga ction ()

* Install a signal handler, act , for the signal sig .
Int sigaction (intsig

const struct sigaction *act,

struct sigaction *oldact);

« Struct defined in <signal.h> to fill in to pass in for act .
struct sigaction {
[* SIG_DFL, SIG_IGN, or pointer to function */
void (* sa_handler)(int);
sigset _t sa_mask; /*Signals to block during handler*/
intsa _flags; [* flags and options */
I3
 YOu may come across various extensions, including another
field in the sigaction struct for a function to catch signals.

8

siga ction () example

inti= 0
[*sign alh andli ngfu nctio n */
void quit(int code){
fprin tf(stderr ,"\ nlnter rupt (code=%d, i= %d \n",
code, i);
exit(1);
}
int main() {
struc t sig actio n newact ;

[*fi Ilin newact */
newact . sa_handl er =quit ; newact .sa fl ags =0;
| f(si gacti on(SI GNT, &newact ,NUL L)== -1) exit(1);
/ * co npute for a while* /
for(; ;)
I f (I ++% 50000000)== 0)

fori ntf (stderr,”.");
}

* Run the program and try sending different signals to it.

Sending a signal

From the command line use

kill[- signal] pid [pid]...
If no signal is specified, kill sends the TERM
signal to the process.

signal can be specified by the number or
name without the SIG.

Examples:
kil -QUIT 88 83

kil -STOP 78 911
kil -9 76433 (9== KILL)

10

Signalling between processes

 One process can send a signal to another
process using the misleadingly named function
call.

Kill(int pid, Int sig);
e This call sends the signal si g to the process
pi d
« Signalling between processes can be used for
many purposes:
— kill errant processes
— temporarily suspend execution of a process

— make a process aware of the passage of time
— synchronize the actions of processes. 11

Timer signals

e Three Interval timers are maintained for each
Process:

— SIGALRM (real-time alarm, like a stopwatch)
— SIGVTALRM(virtual-time alarm, measuring CPU time)
— SIGPROF (used for profilers)

« Useful functions to set and get timer info:
— slee p() - cause calling process to suspend.
— usle ep() - like sleep() but at a finer granularity.
— alar m) - sets SIGALRM
— paus e() — suspend until next signal arrives
—seti timer (), getitimer ()

sl eep() andusle ep() are interruptible by
other signals. 5

Blocking Signals

Signals can arrive at any time.

To temporarily prevent a signal from
being delivered we block it.

he signal is held until the process
unblocks the signal.

When a process ignores a signal, it is
thrown away.

13

Groups of signals

e Signal masks are used to store the set of
signals that are currently blocked.

e Operations on sets of signals:

Int sigemptys et (sigset t *set);

int sigfillse t (sigset_t *set);

INt sigaddset (sigset_t *set, Intsigno

Int sigdelset (sigset_t *set, Intsigno

Int sigismemb er (const sigsett *set,
Int signo);

14

sigp r ocmask ()

In t sig proc mask (I nt how,
const sigse t t *set,
sigset t* oset),;
* howindicates how the signal will be modified
— SIG_BLOCK: add to those currently blocked

— SIG_UNBLOCK:delete from those currently blocked

— SIG_SETMASK:set the collection of signals being
blocked

e set points to the set of signals to be used for
modifying the mask

e 0set on return holds the set of signals that were
blocked before the call.

15

