
Compilers, Interpreters,
Libraries

Compilers, Interpreters,
Libraries

Comparing compilers and interpreters

Shared vs. non-shared libraries.

Layers of System SoftwareLayers of System Software
cat less date gcc grep dddvi nedit

csh (or bash or ksh)

Unix system services

Unix kernel (in C)

computer

libc – C Interface to Unix system services

Compiler vs. InterpreterCompiler vs. Interpreter

• Somehow we need to convert a program into
machine code (object code).

• A compiler passes over a whole program
before translating it into object code.

• An interpreter reads and executes one line of
code at a time.

• An interpreter is a compiled program (often
written in C).

• Preprocessor does text replacement
– #inc l ude replaced by the text of the included file.
– #def i ne macros replaced throughout each file.

• Compiler parses the program, performs
optimization, and produces assembly code.

• Assembler translates assembly code into
machine code.

• Linker combines object files and libraries into
an executable file. It resolves any remaining
symbol references.

C/C++ compilerC/C++ compiler

Java Compiler/InterpreterJava Compiler/Interpreter

• Compiler translates program to byte
code.

• The JVM is a byte code interpreter that
translates byte code to machine code.

• Byte codes implement fine grain
primitives. They are generic enough that
other languages may be compiled to
Java byte code.

Shell InterpreterShell Interpreter

• The interpreter is a C program!
• The shell interpreter is the program executed

when you write
#! / bin/ sh

• Each line of a shell script is input to a C
program that parses the line, and determines
how to execute it.

Standard LibrariesStandard Libraries

• System calls are not part of the C language
definition.

• System calls are defined in libraries (.a .so)
• Libraries typically contain many .o object files.
• To create your own library archive file:

ar c r v mylib . a *.o

• Look in /us r /lib and / usr / loca l /lib for
system libraries.

Shared LibrariesShared Libraries
• .a libraries are not shared. The functions used are

copied into the executable of your program.
– size bloat when lots of processes use the same libraries

– performance and portability are the wins

• .so libraries are shared. One copy exists in memory,
and all programs using that library link to it to access
library functions.
– reduces total memory usage when multiple processes use the

shared library.

– small performance hit as extra work must be done either when a
library function is called, or at the beginning.

– many tradeoffs and variations between OS’s

Shared vs. Non-Shared LibrariesShared vs. Non-Shared Libraries

printf

printf

copy

libc.a

main(){
 printf()
}

myprog

Non-shared

printf

libc.so

main(){
 printf()
}

myprog

Shared

link

System callsSystem calls

• Perform a subroutine call directly to the Unix
kernel.

• li bc provides the C interface to system calls

• 4 main categories
– File management
– Process management
– Communication
– Error handling

Executing a ProgramExecuting a Program

• A special start-up routine (cr t 0) is always
linked in with your program.

• This routine reads the arguments and calls
main.

• The l i bc library is automatically linked into
your program, which is how you have access
to many C functions (print f , open , etc.)

• Your program also calls special functions on
exit that close file descriptors and clean up
other resources.

Processes

Creating and using multiple processes

Process StateProcess State
Only one process can be
running on a uniprocessor

A process is blocked if it
waiting for an event (I/O, signal)

A process is ready if it
could use the CPU immediately.

The scheduler decides
which of the ready
processes to run.

runningrunning

blocked or
sleeping

blocked or
sleepingreadyready

ForkFork
• The fork system call creates a duplicate of the currently

running program.
• The duplicate (child process) and the original (parent

process) both proceed from the point of the fork with
exactly the same data.

• The only difference is the return value from the fork call.

fork

Ch 5.2

Proc ess
A

Pr ocess
A

Pr ocess
A1

Fork exampleFork example

int main ()

{

 pid _t pid ;

 pid = fork() ;

 if (pid < 0) {

 perror ("fork()");

 } else if (pid > 0) {
 printf (" parent \n");

 } else { /* pid == 0 */

 printf (" child \n");

 }

 return 0;

}

Fork: PIDs and PPIDsFork: PIDs and PPIDs

• System call: int f ork (void)
– If fo r k() succeeds it returns the child PID to the

parent and returns 0 to the child;
– If fo r k() fails, it returns -1 to the parent (no child

is created) and sets errno

• Related system calls:
– int getpid () – returns the PID of current

process
– int getppid () – returns the PID of parent

process (ppid of 1 is 1)

When fork() failsWhen fork() fails

• There is a limit to the maximum number
of processes a user can create.

• Once this limit is reached, subsequent
calls to fork () return -1.

fork () propertiesfork () properties

• Properties of parent inherited by child:
– UID, GID
– controlling terminal
– CWD, root directory
– signal mask, environment, resource limits
– shared memory segments

• Differences between parent and child
– PID, PPID, return value from fork()
– pending alarms cleared for child
– pending signals are cleared for child

Fork exampleFork example
int i;

pid _t pid ;

i = 5;

printf ("%d\n", i);

pid = fork();

if (pid > 0)

i = 6; /* only parent gets here */

else if (pid == 0)

i = 4; /* only child gets here */

printf ("%d\n", i);

Fork ExampleFork Example

in t i; pid _t pid ;
i = 5;
pr i ntf (" %d\n" , i) ;
/* prin t s 5 * /
pi d = f ork() ;
/* pid == 67 7 */
if (pid > 0)
 i = 6;
el se (pi d == 0)
 i = 4;
pr i ntf (" %d\n" , i) ;
/* prin t s 6 * /

in t i; pid _t pid ;
i = 5;
pr i ntf (" %d\n" , i) ;

pi d = f ork() ;

if (pid > 0)
 i = 6;
else if (pid = = 0)
 i = 4;
pr i ntf (" %d\n" , i) ;
/* prin t s 4 * /

Original process (parent) Child process

/* pid == 0 * /

PID/PPID ExamplePID/PPID Example
#include < stdio .h>
#include <sys/types.h>
#include < unistd .h>
int main () {
 pid _t pid ;
 printf ("ORIG: PID=%d PPID=%d\n",
 getpid (), getppid ());
 pid = fork ();
 if (pid > 0)
 printf ("PARENT: PID=%d PPID=%d\n",
 getpid (), getppid ());
 else if (pid == 0)
 printf ("CHILD: PID=%d PPID=%d\n",
 getpid (), getppid ());
 return(0);
}

Process TerminationProcess Termination

• Orphan process:
– a process whose parent is the init process (PID 1)

because its original parent died before it did.
• Terminating a process: exi t ()

• Every normal process is a child of some
parent, a terminating process sends its parent
a SIGCHLD signal and waits for its
termination status to be accepted.

• The Bourne shell stores the termination code
of the last command in $?.

Ch 5.6

wait ()wait ()

• System call to wait for a child
– int wait(int * status)

• A process that calls wait() can:
– block (if all of its children are still running)
– return immediately with the termination status of a

child (if a child has terminated and is waiting for its
termination status to be fetched)

– return immediately with an error (if it doesn’t have
any child processes.)

Ch 5.7

ZombiesZombies

• A zombie process:
– a process that is “waiting” for its parent to

accept its return code
– a parent accepts a child’s return code by

executing wait()
– shows up as Z in ps –a

– A terminating process may be a (multiple)
parent; the kernel ensures all of its children
are orphaned and adopted by init.

wait and waitpidwait and waitpid
• wai t() can

– block
– return with termination status
– return with error

• If there is more than one child wait() returns
on termination of any children

• wai tpid can be used to wait for a specific child
pid.

• wai tpid also has an option to block or not to
block

wait and waitpidwait and waitpid
• wai tpid has an option to block or not to block
• pid_t waitpid (pi d, &statu s, option) ;

– if pi d == -1 Æ wait for any child

– if opt ion == WN OHANG Æ non-blocking

– if opt ion == 0 Æ blocking

• wai tpid (-1, &sta t us, 0);
is equivalent to wait (&sta t us);

Example of waitExample of wait
#inc l ude <sys / types.h>

#inc l ude <sys / wait.h>

int main (void) {

int statu s;

if(fork() == 0) ex i t(7); /* normal*/

wait(&sta t us); prE xit (statu s);

if(fork() == 0) abort(); /* SIGABRT*/

wait(&sta t us); prE xit (statu s);

if(fork() == 0) st atus /= 0 ; /*FPE*/

wait(&sta t us) prEx i t (status) ;

}

prExit.cprExit.c

#i nclud e <sy s/typ es.h >

vo i d pr Exit (i nt st atu s) {
i f(WI FEXI TED(s tatu s))

pr i ntf (" normal te r mina t ion\ n");
else if(WI FSTOPPED(stat us))

pr i ntf (" chil d sto pped, sign al no . = %d\ n",
 WSTOPSI G(st atus)) ;

else if(WI FSIGNALED(sta t us))
pr i ntf (" abno r mal t ermi natio n, "

 "si gnal no.= % d\ n" , WT ERMSIG(sta t us)) ;
}

ExecExec

• The exec system call replaces the program being run
by a process by a different one.

• The new program starts executing from the
beginning.

• On success, exec never returns, on failure, exec
returns -1.

Ch 5.3

exec("Y");Process A
running

program X

Process A
running

program Y

Exec exampleExec example
Program X
in t i = 5;

pr i ntf (" %d\n", i) ;

ex ec("Y ");

pr i ntf (" %d\n", i) ;

Program Y
pr i ntf (" hel l o\n") ;

exec propertiesexec properties

• New process inherits from calling
process:
– PID and PPID, real UID, GID
– controlling terminal
– CWD, root directory, resource limits
– pending signals
– pending alarms

exec ()exec ()

• Six versions exec():
ex ecl (c har * path, cha r *ar g0, …, (char *)0);

ex ecv (c har * path, cha r * ar gv[]) ;

ex ecle (char * path , ch ar *a r g0, …,(char *)0,

 char * envp []);

ex ecve (char * path name, cha r * ar gv[],

 char * envp []);

ex eclp (char * file , ch ar *a r g0, …,(char *)0);

ex ecvp (char * file , ch ar * ar gv []) ;

Processes and File
Descriptors

Processes and File
Descriptors

• File descriptors are handles to open files.
• They belong to processes not programs.
• They are a process’s link to the outside world.

FDs preserved across fork and execFDs preserved across fork and exec

fork()

exec("Y"); /u/ krueger / foo
/u/ krueger /bar

fd =3

fd =3

fd =8

fd =8

Ch 5.5

Process A
running

program X

Process A
running

program X

Process A
running

program Y

Process A
running

program Y

Process BProcess B

Process CProcess C

Initializing UnixInitializing Unix

• See “top”, “ps –aux” to see what’s running
• The only way to create a new process is to

duplicate an existing process. Therefore the
ancestor of all processes is in i t with pid = 1

fork

exec execexec

in i tin i t in i tin i tin i tin i tin i tin i tin i tin i t

in i tin i t get tyget ty lo ginlo gin tc shtc sh

Time

How csh runs commandsHow csh runs commands

• When a command is typed, csh forks and then execs
the typed command.

• After the fork, file descriptors 0, 1, and 2 still refer to
stdin, stdout, and stderr in the new process.

• By convention, the executed program will use these
descriptors appropriately.

fork

exec exec

cs hcs h cs hcs hcs hcs h

cs hcs h dat edat e cs hcs h lsls

Time

fork

How csh runsHow csh runs
duplicate:

fork()

differentiate:
exec()

terminate:
exit()

signal

wait for child:
wait()

Process running shell
PID 34

Process running shell
PID 34

Child
process running shell

PID 35

Child
process running shell

PID 35Parent
process running shell

PID 34

Parent
process running shell

PID 34

Parent
process running shell

PID 34

Parent
process running shell

PID 34

Child
process running program

PID 35

Child
process running program

PID 35

Child
process terminated

PID 35

Child
process terminated

PID 35

