Static Allocation >

int
int
int

int

Recall: static allocation
happens at compile time
based on variable

definitions.
int x =2;
int al4];

int *b;

int main() {}

0x804957c
0x8049588

0x8049684
0x8049688
0x804968c
0x8049690

/ 0x8049694

0x8049698

main 0x804837c .text _,9'
X 0x8049588 .data 04
b 0x8049688 .bss 04

a 0x804968c .bss 10

SYMBOL TABLE: K

Dynamic
Allocation

X =2

a[4];

*b;

main() {
b=(int * malloc (4*

sizeof (int));

b[0] = 10;
b[1] = 20;

0x804837¢c

0x804957c

0x8049588 2

0x8049684
0x8049688

0x804968c *

0x8049690
0x8049694
0x8049698

0x9e15020
0x9e15024
0x9e15028
0x9e1502c

rlnain

Init.data

uninit. data
oy

q907?
7
¥ ildld
L itdld

vlnain

init.data

uninit. data

Dynamic Memory Allocation

e |n Java,
Sets ;

/ Memory is allocated for object
s= new HashSet ();

* InC,
—int *a;

—a= (int

SYNOPSIS
#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);
void *malloc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_t size);

DESCRIPTION

malloc() allocates size bytes and returns a pointer to the allocated

memory. The memory is not cleared.

free() frees the memory space pointed to by ptr, which must have been

/I Memory is allocated for pointer s

/* Memory is allocated for pointer a */

— [* Memory is allocated for a to point to */
*) mall oc(10 * si zeof(int)) ;

heap

returned by a previous call to malloc(), calloc() or realloc(). Other-
wise, or if free(ptr) has already been called before, undefined
behaviour occurs. If ptris NULL, no operation is performed.

malloc

void* mallo c(siz e t size);
* Some things you haven't seen yet:
voi d*
* A generic pointer type that can point to memory

of any type.
si ze t

* A type defined by the standard library as the type
returned by si zeof .

* The type is unsig ned int.

NULL pointers

A function that returns a block of memory
might fail to do so, in which case it
returns a null pointer.

 NULL is a pre-processor variable defined
in iolib.h (included from stdio.h) and other
places

—itis usually defined to be 0 (no program
allocates anything at address 0x0)

malloc

» Usually cast the return value of malloc to the type you
want.
int *I = (int *) mallo c(si zeof (int)) ;
char*c =(char *)mall oc(NAME SIZE) ;

» sizeof works on types, and knows type of expressions.
double* d=(double*)mall oc(5*sizeof(*d));

» Be careful to allocate the correct number of bytes.
e Eg.,int *i= (int * mdloc (1);/ *wrong*/
— allocates 1 byte, not 1 int.

De-allocating memory

int *a =(int *Ymdloc(10* size of(int));
i nt b[10];

a= b;
* What is wrong with the last line? It compiles and
runs fine.

* We have lost the pointer to the memory region
allocated in the first line, so that space is now
tied up until the program terminates.

 Memory leak.

free()

» Before removing the last pointer to a
memory region, you must explicitly

deallocate it.
int *a =(int *)malloc (10* sizeof (i nt));
int b[10];

free(a); Isa NULL after the free

a=b ; staterment?
- No, fr ee cammot change the
value of a parameter

Arrays of pointers

* Most obvious use is to get an array of strings.

#def i ne SIZE 4
char** strs =(char **)m alloc (3* sizeof (char *);

for(i =0;i < 3ji++) |
strs [i]=(ch ar*) mallo c(SIZE);
}
strs [0]= str ncpy(strs [0],"209" , SIZE);

strs [1]= str ncpy(strs [1],"369" , SIZE);

11

Dangling pointers

int *a =(int *Ymdloc(l0* size of (int));
free(a);

print f(“%l\ n”, af0]);/* Err or* /

» Dereferencing a pointer after the memory it

refers to has been freed is called a “dangling
pointer”.
» Behaviour is undefined.
— appear to work
— bogus data

— program crash 10

Tips

» Use a debugger and start to figure out
what valid addresses look like.

» Check return values from library
functions.

* \Watch out for common errors:

— forgetting to allocate memory when a
pointer is declared.

12

