Statlc AllOCaUOn 0x804837¢ main

e Recall: static allocation
nappens at compile time
pased on variable

definitions.
Int x =2;
int al4];

Int *Db;

int main() {}

/ 0x8049694 -

0x804957c | N1 T.data
0x8049588 2
0x8049684 uni nit. data
0x8049688 177"

‘OX804968C :
- 0x8049690 ~

0x8049698

SYMBOL TABLE: 3
main 0x804837c .text 9
X 0x8049588 .data 04
b 0x8049688 .bss @4
a 0x804968c .bss 10

....................
.....................

Dynamic Memory Allocation

e In Java,
Sets ; /I Memory is allocated for pointer s

// Memory Is allocated for object
S= new HashSet ();

 InC,
—1nt *a; /*Memory is allocated for pointer a */

— [* Memory is allocated for a to point to */
—a= (int *) nall oc(10 * si zeof(Iint)) ;

Int
Int
Int

Int

}

Dynamic
Allocation

X =2
al4];
*b;

main() {

b=(Int

b[0] = 10;
b[1] = 20:

) malloc (4

sizeof (Int));

0x804837c

0x804957c
0x8049588

0x8049684
0x8049688

0x804968c ~
0x8049690 “
0x8049694
0x8049698 “

0x9e15020
0x9e15024
0x9e15028
0x9e1502c

main
| nit. data
—
uninit. data
.0x9e15020
,?5 E

D—rad—2a0)
N) N

heap

....................

SYNOPSIS
#include <stdlib.h>

void *calloc(size _t nmemb, size t size);
void *malloc(size t size);

void free(void *ptr);

void *realloc(void *ptr, size t size);

DESCRIPTION
malloc() allocates size bytes and returns a pointer to the allocated
memory. The memory is not cleared.

free() frees the memory space pointed to by ptr, which must have been
returned by a previous call to malloc(), calloc() or realloc(). Other-
wise, or if free(ptr) has already been called before, undefined
behaviour occurs. If ptris NULL, no operation is performed.

malloc

void* mallo c(siz e t size),
e Some things you haven't seen yet:
void?*
e A generic pointer type that can point to memory

of any type.
Sl ze t

A type defined by the standard library as the type
returned by si zeof .

 The typeisunsig ned int.

malloc

Usually cast the return value of malloc to the type you
want.

nt * = (int * mallo c(si zeof (Iint)) ;
char*c =(char *) mall oc(NAME SIZE) ;
sizeof works on types, and knows type of expressions.
double* d=(double*)mall oc(5*si zeof (*d));

Be careful to allocate the correct number of bytes.
Eg.,int *= (int * mdloc (1);/ *wrong*
— allocates 1 byte, not 1 int.

NULL pointers

* A function that returns a block of memory
might fall to do so, in which case It
returns a null pointer.

« NULL Is a pre-processor variable defined

In 1olib.h (included from stdio.h) and other
places

— It 1s usually defined to be O (no program
allocates anything at address 0x0)

De-allocating memory

int *a =(i1nt *)mdloc(l10* size of (iInt));
int b[10];

a= b;
 What is wrong with the last line? It compiles and
runs fine.

 We have lost the pointer to the memory region
allocated in the first line, so that space Is how
tied up until the program terminates.

« Memory leak.

free()

* Before removing the last pointer to a
memory region, you must explicitly

deallocate It.
int *a =(int *)malloc (10* sizeof (I nt));
int Db[10];

free(a); Isa NULL after the free

a=b ; staterent?

- No, fr ee carmot change the
value of a parameter

Dangling pointers

Int *a=(int *Ymdloc(10* size of (I nt));

free(a)

print f(“%l\n”, aJ0]);/* Err or* /

» Dereferencing a pointer after the memory it
refers to has been freed Is called a “dangling
pointer”.

e Behaviour is undefined.

— appear to work

— bogus data

— program crash 0

Arrays of pointers

 Most obvious use Is to get an array of strings.

#def I ne SIZE 4
char** strs =(char **)m alloc (3* sizeof (char *));

for(i =0;i < 3;i++) {
strs [i]=(ch ar*) mallo c(SIZE),
}
strs [0]= str ncpy(strs [0],"209" |, SIZE);

strs [1]= str ncpy(strs [1],"369" |, SIZE);

11

TIpS

 Use a debugger and start to figure out
what valid addresses look like.

 Check return values from library
functions.
e \Watch out for common errors:

— forgetting to allocate memory when a
pointer Is declared.

12

