Pointers and Arrays

— Recall the pointer syntax:
— char *cptr;
* declares a pointer to a char

+ allocates space to store a pointer to a char
—char ¢ ='a ';
—cptr = &c;

* cptr gets the value of the address of ¢

* the value stored at the memory location referred to by
cptr is the address of the memory location referred

to by c;

—*cptr = '"b'; -dereference cptr

* the address stored at cptr

location where 'b' will be stored.

Arrays vs. Pointers

* An array name in expression context decays
into a pointer to the zero’th element.

* E.Q.
int a[3]=
int *p =a;
p[0] = 10;
print f(“%

{1, 3, 5k
p = &[0];

%i\n”, al0],* p);

identifies the memory

Pointers and Arrays

—» char *cptr;

0x80493e0
—> char ¢ ='a '; 0x80494dc
—> cptr = &c;
— *cptr = "'Db';
0x80494dc B
Symbol Table
Cptr | Ox80493¢0
C | Ox80494dc
Example
int a[4]={0 , 1,2,3} ;
int *p=a; _
int i =0; (*p ==al0] | 0
for(1 =01 <4 i+4) s(p+ 1) ==a1] | 1
printf ("%d\n",*p+ i)); (p+1) all]

}

Why does adding 1 to p move it to the next
spot for an int, when an int is 4 bytes?

*(pt2==a2 | 2

*(pt3==a3 | 3

Pointer Arithmetic

» Pointer arithmetic respects the type of the
pointer.

 E.g.,
int i[2]= {1, 2} char c[2]= {4&a ,z'}
int *ip; char *cp;
ip =i; cp= ¢c;

“(ip + 1) +=2
(really adds 4 to ip)

(cp + 1)= 'b';
(really adds 1 to cp)

Passing Arrays as Parameters

int sum(int *a){
int i,s=0;
for(i =0;i < ?7?;i++)
s += ali; /| * thisis | egal */

* How do you know how big the array is?

 Remember that arrays are not objects, so knowing
where the zero’'th element of an array is does not
tell you how big it is.

» Pass in the size of the array as another parameter.

Passing Arrays as Parameters

int main()
{
int i[38]1={1 0,9, 8}
prin tf(“sumi s %l\n”,s um());/ irardy

}

int sum(What goes here?){

}

« What is being passed to the function is the
name of the array which decays to a pointer to
the first element — a pointer of type int.

Array Parameters

int sum(int *a, int size)
* Also legal is
int sum(int af] , int size)
* Many advise against using this form.
— You really are passing a pointer-to-int not an array.
— You still don't know how big the array is.
— Outside of a formal parameter declaration int a[]; is
illegal
e int a; andint a[10] ; are completely different
things

Multi-dimensional arrays

 Remember that memory is a sequence of bytes.

row O row 1 row 2
0]1]2[3]4[5]6]7]8]

int a[3][3] ={ {0, 1,2} ,
{3, 4,5} ,
{6, 7.8} };
» Arrays in C are stored in row-major order
e row-major access formula

x[1]0] == *(X+ i* n +]) <Butuse array
where n is the row size of x notation!

Summary

* The name of an array can also be used
as a pointer to the zero’th element of the
array.

» This is useful when passing arrays as
parameters.

» Use array notation rather than pointer
arithmetic whenever you have an array.

10

