Pointers and Arrays

— Recall the pointer syntax:
— char *cptr;
» declares a pointer to a char
 allocates space to store a pointer to a char
—char ¢ ='a ';
—cptr = &cC;
e cptr gets the value of the address of c

 the value stored at the memory location referred to by
cptr Is the address of the memory location referred

to by c;
—*cptr = 'b'; -dereference cptr

 the address stored at cptr identifies the memory
location where ' will be stored.

—» C
_>C

—» C

nar
nar

Otr

—> *Cptr

Pointers and Arrays

*cptr;

C :Ia 1 .

= &C;
:'b';

cptr

Symbol Table

0x80493e0

0x80494dc

0x80493e0

0x80494dc

0x80494dc

Arrays vs. Pointers

 An array name in expression context decays
Into a pointer to the zero’th element.

e E.Q.
int a[3]= {1, 3, 5}
Int *p =a; p = &[0];
p[0] = 10;
print f(“% %l\n”, aj0],* p);

int af4]={0 , 1,2, 3}
int *n=a % _
It | p: 0 "p) ==40]
for(1 =0;1 < 4:|++ ¢ —
f:)r | ntf ("% d\ n", *(p +) i{)); P+ 1) all
}
*(p+2) ==al2]
*(pt+ 3 ==al3

Why does adding 1 to p move it to the next
spot for an int, when an int is 4 bytes?

Pointer Arithmetic

e Pointer arithmetic respects the type of the
pointer.

e E.g.,
int 1[2]= {1, 2} char c[2]= {'a" ,'z"'};
I nt *ip; char *cp;
ip =1; cp= ¢C,
*(p + 1) +=2 (ep +)= 'b';

(really adds 4 to ip) (really adds 1 to cp)

Passing Arrays as Parameters

iInt nmain()

{
int 1[3]={1 0,9, 8};
prin tf(“sumi s %\n ”,s um(i));/ * 2%

}

int sum(What goes here?){

}

 What is being passed to the function is the
name of the array which decays to a pointer to
the first element — a pointer of type Int.

Passing Arrays as Parameters

int sum(int *a){
int 1,s=0;
forC 1 =0;I < ?7;01t+)
s += all; [* thisis | egal */

How do you know how big the array I1s?

« Remember that arrays are not objects, so knowing
where the zero’th element of an array Is does not
tell you how big it is.

e Pass in the size of the array as another parameter.

Array Parameters

Int sum(int *a, Int size)

 Alsolegalis
Int sum(int af] , 1 nt size)

 Many advise against using this form.
— You really are passing a pointer-to-int not an array.
— You still don't know how big the array is.
— Outside of a formal parameter declaration int a[]; is
illegal
e Int a; andint al 10] ; are completely different
things

Multi-dimensional arrays

« Remember that memory is a sequence of bytes.

row O

*

4

row 1 row 2
L 2 L g

0

1

2

3

4

S

6

Z

8

int af 3][3

X[1]l ==

=1 10,
{3,
{6,

* (X +
where n IS the row size of X

i x
I

1,2}

4, 5}
7,8 };
e Arrays Iin C are stored in row-major order

e row-major access formula
n+j)

But use arr
notation!

:

Summary

 The name of an array can also be used
as a pointer to the zero’'th element of the
array.

e This Is useful when passing arrays as
parameters.

e Use array notation rather than pointer
arithmetic whenever you have an array.

10

