Introto C

#i ncl ude <stdi o. h>

int main() {
int i;
extern int gecd(int x, int y);
for (i =0; i < 20; i++)
printf("gcd of 12 and % is %\ n", i, gcd(12,i));
return (0);

}

int ged(int x, int y) {
int t;
while (y) {
t=x; X =y, y =t %y,
}

return (x);

Basic Control Structures

e Functions - can omit ext er n declaration
» f or loop - like Java

— body is one statement
—braces {} enclose blocks
— blocks introduce scope level

— can't mix declarations and non-declarations
efor(int i ... illegalin ANSIC

C

About C

Similar to Java - Java took best of C
#i ncl ude - use declarations of functions
mai n() returns int, the exit status

Functions must be
— declared - tells compiler how to use function
— defined - creates the item

Declarations must appear before code

More about C

Uninitialized variables have no default
value!

No run-time checking!
No polymorphism (pri nt f format strings)

No objects (C predates object-oriented)

ompile: gcc -Wall -g -o gcd gcd.c

C data types Data Type Conversion

 basic types and literals (King: Ch 7) « The expression on the right side is converted to the
type of the variable on the left.
int i = 38; Iong el = 38L; Char C;
int hex = 0x2a; int oct = 033; : o A * ; i *
printf("i = 9%, el = %d, hex = %, oct = %\ n", Int 1= ¢ /* ¢ Is converted to int */

i, el hex, oct): double d =i; /* i is converted to double */

i =38, el =38, hex = 42, oct = 27
» This is no problem as long as the variable's type is

double d1 = 0.3: double d2 = 3.0: at least as “wide” as the expression.
doubl e d3 = 6.02e23; char ¢ = 500; /* conpiler warning */
printf("dl = %, d2 = %, d3 = %\n", di, d2, d3) int kK = di:
dl = 0.300000, d2 = 3.000000, d3 = 6.020000e+23 printf("c =%, k = %\n", c, k);
c= , k=0
5 6

Data Type Capacity Mixed Mode Arithmetic

double m=5/6; /* int / int =int */
printf("Result of 5/6 is %\n", m;

* What happens when the following code is Result of 5/6 is 0. 000000

executed?

double n = (double)5/6; /* double / int = double */
printf("Result of (double)5/6 is %\n", n);

char ¢ = 127; Result of (double)5/6 is 0.833333

int d,
; A — 0 " . double o = 5.0/6; /* double / int = double */
gu_ntf(¢ = %\n", c); printf("Result of 5.0/6 is %\n", 0);
' Result of 5.0/6 is 0.833333
d = 512 / c;
printf("c = %, d = %d\n", c, d); int p=5.0/6; /* double / int = double but then

converted to int */
printf("Result of 5.0/6 is %\n", p);

Result of 5.0/6 is O

Logical
address

Memory model

0]

« Memory is just a sequence
of bytes

A memory location is
identified by an address.

2032 -1

Arrays

Code

Static Data

Dynamic Data

Urused Logical
Address Space

Stack

» Arrays in C are a contiguous chunk of
memory that contain a list of items of the

same type.

* If an array of ints contains 10 ints, then
the array is 40 bytes. There is nothing

extra.

* In particular, the size of the array is not
stored with the array. There is no

runtime checking.

11

0
Example Code
ot x = 10 0x8049430 x 10
int y;
int f(int p, int q { 0x8049528 y
int j =5;
‘}»returnp*q+j; D ic Data
PN Offff3a30 5
return O; f Oxffff3a34 p 10
} Oxffff3a38 q 10
Mai N Oxffff8910 i 10
Stack 10
Arrays
x[0] 0x88681140
int x[5]: x[1] 0x88681144
for (i = 0, i <=5; i++) { X[2] 0x88681148
) X[l =i X[3] 0x8868114c
X[4] 0x88681150
? 0x88681154

« No runtime checking of array bounds

« Behaviour of exceeding array bounds is “undefined”

> program might appear to work
> program might crash

> program might do something apparently random

12

Initializing arrays

Declaration/Definition
int a[10]; /* declare'a ' asan
arrayofl 0 ints */
size of (@)== 10* sizeo f(int)== 40;

Static initialization:
char letters| 4] ={a, q o, e, T)

Initialization loop:
for(i =0;i < N;i++) {
afijl= 0
}

13

Pointers

» A pointer is a higher level version of an
address.

» A pointer has type information.

int i;
int *p; [/ declarep topoint toty pe int */
p = i; [derefer ence p — setw hatp point to*
p= & [* Gv e p theval ue oft he address of i*/
char *c = p;/*War ning:i nit iali zationfro m

inc ompatib | e pointerty pe* /

15

Arrays

Warning: It is the programmer's
responsibility to keep track of the size of
an array.

Often define a maximum size.

Pre-processor directives used for
constants:

—E. g., #defi ne MAXSI ZE 30

14

Important!
I nt *p;
Memory is allocated to store the pointer

No memory is allocated to store what the
pointer points to!

Also, p is not initialized to a valid address
or null.

l.e., *p=1 0; iswrong unless memory
has been allocated and p set to point to it.

16

A picture A picture

Lo 0x80493¢0 19 Ox80493e0 19
; int i = 19;
int *p;
/| *error*/ 't
P = q = & 0x80494dc | 0x8049530
p = (int *)malloc(sizeof(int));
* =
0x80494e0 | 0x80493c0 p =1, 0x80494e0 | 0x80493e0
Symbol Table Symbol Table
i [0x80493¢0 | | Ox80493€0 9530 | 19
P | Ox8049%4dc P | Ox804%4dc Ox804
q | 0x80494c0 G [OxB0494e0

17 18

