
1

Intro to CIntro to C
#include <stdio.h>

int main() {

int i;

extern int gcd(int x, int y);

for (i = 0; i < 20; i++)

printf("gcd of 12 and %d is %d\n", i, gcd(12,i));

return (0);

}

int gcd(int x, int y) {

int t;

while (y) {

t = x; x = y; y = t % y;

}

return (x);

}

2

About CAbout C

• Similar to Java - Java took best of C
• #i ncl ude - use declarations of functions
• mai n() returns int, the exit status

• Functions must be
– declared - tells compiler how to use function
– defined - creates the item

• Declarations must appear before code

3

Basic Control StructuresBasic Control Structures

• Functions - can omit ext er n declaration
• f or loop - like Java

– body is one statement
– braces { } enclose blocks

– blocks introduce scope level
– can't mix declarations and non-declarations

• for (i nt i … illegal in ANSI C

4

More about CMore about C

• Uninitialized variables have no default
value!

• No run-time checking!
• No polymorphism (printf format strings)

• No objects (C predates object-oriented)

Compile: gcc -Wall -g -o gcd gcd.c

5

C data typesC data types
• basic types and literals (King: Ch 7)

int i = 38; long el = 38L;
int hex = 0x2a; int oct = 033;
printf("i = %d, el = %ld, hex = %d, oct = %d\n",
 i, el, hex, oct);

double d1 = 0.3; double d2 = 3.0;
double d3 = 6.02e23;
printf("d1 = %f, d2 = %f, d3 = %e\n", d1, d2, d3)

i = 38, el = 38, hex = 42, oct = 27

d1 = 0.300000, d2 = 3.000000, d3 = 6.020000e+23

6

Data Type ConversionData Type Conversion
• The expression on the right side is converted to the

type of the variable on the left.
char c;
int i = c; /* c is converted to int */
double d = i; /* i is converted to double */

• This is no problem as long as the variable's type is
at least as “wide” as the expression.
char c = 500; /* compiler warning */
int k = d1;
printf("c = %c, k = %d\n", c, k);

c = , k = 0

7

Data Type CapacityData Type Capacity

• What happens when the following code is
executed?

char c = 127;
int d;

printf("c = %d\n", c);
c++;

d = 512 / c;
printf("c = %d, d = %d\n", c, d);

8

Mixed Mode ArithmeticMixed Mode Arithmetic

Result of 5/6 is 0.000000

Result of (double)5/6 is 0.833333

Result of 5.0/6 is 0.833333

Result of 5.0/6 is 0

double m = 5/6; /* int / int = int */
printf("Result of 5/6 is %f\n", m);

double n = (double)5/6; /* double / int = double */
printf("Result of (double)5/6 is %f\n", n);

double o = 5.0/6; /* double / int = double */
printf("Result of 5.0/6 is %f\n", o);

int p = 5.0/6; /* double / int = double but then
 converted to int */
printf("Result of 5.0/6 is %d\n", p);

9

Memory modelMemory model

• Memory is just a sequence
of bytes

• A memory location is
identified by an address.

Code

Static Data

Dynamic Data

Unused Logical
Address Space

Stack

0

2̂ 32 -1

Logical
address

10

ExampleExample

int x = 10;
int y;

int f(int p, int q) {
 int j = 5;
 return p * q + j;
}

int main() {

 int i = x;
 y = f(i, i);
 return 0;
}

0x8049430 x

Code

Dynamic Data

Unused Logical
Address Space

0

10

0x8049528 y

main 10

50xffff3a30 j
10

0xffff8910 i

100xffff3a38 q
f

Stack

0xffff3a34 p

11

ArraysArrays

• Arrays in C are a contiguous chunk of
memory that contain a list of items of the
same type.

• If an array of ints contains 10 ints, then
the array is 40 bytes. There is nothing
extra.

• In particular, the size of the array is not
stored with the array. There is no
runtime checking.

12

ArraysArrays

int x[5];
for (i = 0; i <= 5; i++) {
 x[i] = i*i;
}

x[0]

x[1]

x[2]

x[3]

x[4]

� No runtime checking of array bounds

� Behaviour of exceeding array bounds is “undefined”

� program might appear to work

� program might crash

� program might do something apparently random

?

0x88681140

0x88681144

0x88681148

0x8868114c

0x88681150

0x88681154

13

Initializing arraysInitializing arrays

Declaration/Definition
int a[10]; /* declare 'a ' as an
 array of 1 0 ints */
size of (a) == 10 * sizeo f (int) == 40;

Static initialization:
char letters[4] = {'a', 'q' , 'e' , 'r' };

Initialization loop:
for(i = 0; i < N; i++) {

a[i] = 0;
}

14

ArraysArrays

• Warning: It is the programmer's
responsibility to keep track of the size of
an array.

• Often define a maximum size.
• Pre-processor directives used for

constants:
– E. g., #define MAXSIZE 30

15

PointersPointers

• A pointer is a higher level version of an
address.

• A pointer has type information.

i nt i ;
i nt * p; /* dec l are p t o p oin t to ty pe i nt * /
* p = i ; /* der efer ence p – set w hat p poin t t o*/
p = &i /* Giv e p t he val ue of t he addr ess of i*/
char * c = p; /* War nin g: i nit i ali zat i on fro m
 inc ompatib l e poin t er ty pe * /

16

Important!Important!
• i nt * p;

• Memory is allocated to store the pointer
• No memory is allocated to store what the

pointer points to!
• Also, p is not initialized to a valid address

or null.
• I.e., * p = 1 0; is wrong unless memory

has been allocated and p set to point to it.

17

A pictureA picture

?

19

0x80493e0

int i = 19;
int *p;
int *q;
*p = i; /*error*/
q = &i

i
p

0x80493e0
0x80494dc
0x80494e0q

Symbol Table

0x80493e0

0x80494e0

0x80494dc

18

A pictureA picture

0x8049530

19

0x80493e0

int i = 19;
int *p;
int *q;

q = &i
p = (int *)malloc(sizeof(int));
*p = i;

i
p

0x80493e0
0x80494dc
0x80494e0q

Symbol Table

0x80493e0

0x80494e0

0x80494dc

190x8049530

