
2

ShellsShells

• A shell is a command line interpreter that is
the interface between the user and the OS.

• The shell:
– analyzes each command
– determines what actions are to be performed
– performs the actions

• Example:
wc –l file1 > file2

3

Which shell?Which shell?
• sh – Bourne shell

– Most common, other shells are a superset
– Good for programming

• csh or tcsh – command-line default on CDF
– C-like syntax
– Best for interactive use. Not good for programming.

• bash – default on Linux (Bourne again shell)
– Based on sh, with some csh features.

• korn – written by David Korn
– Based on sh – Some claim best for programming.
– Commercial product.

4

bash versus shbash versus sh

• On the CDF machines, when you run
sh , you are actually running bash .

• bash is a superset of sh.

• For CSC209, you will be learning only
the features of the language that belong
to sh .

5

Common shell facilitiesCommon shell facilities
• Input-output redirection

prog < infile > outfile

ls >& outfile # csh stdout and stderr

ls > outfile 2>&1 # sh stdout and stderr

• Pipelining commands
– send the output from one command to the input of the

next.
ls - l | wc

ps –aux | gr ep kruege r | sort

6

Job ControlJob Control
• A job is a program whose execution has been

initiated by the user.
• At any moment, a job can be running or suspended.
• Foreground job:

– a program which has control of the terminal

• Background job:
– runs concurrently with the parent shell and does not take

control of the keyboard.

• Start a job in the background by appending &
• Commands: ^Z, jobs, fg , bg, k i ll

7

File Name ExpansionFile Name Expansion
ls *.c
rm file[1-6].?
cd ~/bin
ls ~ krueger
ls *.[^ oa] - ^ in csh, ! in sh

• * stands in for 0 or more characters
• ? stands in for exactly one character
• [1 - 6] stands in for one of 1, 2, 3, 4, 5, 6
• [^ oa] stands in for any char except o or a
• ~/ stands in for your home directory
• ~kr uege r stands in for krueger’s home directory

8

ExceptionsExceptions

• ls .* doesn’t do what you would expect
• Why?

– .* matches . and ..
– because . files are hidden files, we don’t

usually want to include them in our
operations.

• How to get around this feature?
– ls -d . * - still catches . and . .

– ls .??* - misses files like .b Challenge: find
other ways.

9

Shell Programming
(Bourne shell)

Shell Programming
(Bourne shell)

• Commands run from a file in a subshell
• A great way to automate a repeated

sequence of commands.
• File starts with #!/bi n/ sh

– absolute path to the shell program
– not the same on every machine.

• Can also write programs interactively by
starting a new shell at the command line.
– Tip: this is a good way to test your shell programs

10

ExampleExample
• In a file:
#! /b i n/ sh

echo " Hello Wor l d!"

• At the command line:

skyw olf% sh
sh-2 . 05b$ ech o "Hello W orld"
Hell o World
sh-2 . 05b$ exi t
exit
skyw olf%

11

CommandsCommands

• You can run any program in a shell by calling it as
you would on the command line.

• When you run a program like grep or l s in a shell
program, a new process is created.

• There are also some built-in commands where no
new process is created.

� echo

� set

� read

� exit

� test

� shif t

� wait

"man sh” to
see all builtins.

12

VariablesVariables

• local variables – spaces matter
– name=value – assignment

– $name – replaced by value of name

– variables can have a single value or list of values.

• Single value:
bind i r ="/usr/ bin"

• List of values (separated by spaces):
sear chdirs ="~ / tests $HO ME/test2 . "

13

Example:
($ is the default sh prompt)

Example:
($ is the default sh prompt)

$ bindi r ="/ usr/b i n"

$ searc hdir s="~/ t ests $HO ME/te st2 . "

$ echo $sea r chdi r s

~/ t ests /u/ krueg er /te st2 .

$ echo $bin dir

/u sr/bi n

14

String ReplacementString Replacement
• Scripting languages are all about replacing

text or strings, unlike other languages
such as C or Java which are all about data
structures.

• Variables are placeholders where we will
substitute the value of the variable.

• Example:
it ers =" 1 2 3 4"

fo r i i n $it ers ; do

echo $i

done

fo r i i n 1 2 3 4; do

echo $i

done
=

15

QuotingQuoting

• Double quotes inhibit wildcard replacement
only.

• Single quotes inhibit wildcard replacement,
variable substitution and command
substitution.

• Back quotes cause command substitution.

• Practice and pay attention.
Single and double quotes

are on the same key.
Back quote is often on

the same key as ~.

16

Quoting exampleQuoting example

$ ec ho Today i s date

Today is date

$ ec ho Today i s `date`

Today is Thu Sep 19 12: 28:55 EST 2002

$ ec ho ”Today is ` date` ”

Today is Thu Sep 19 12: 28:55 EST 2002

$ ec ho ’Today is ` date` ’

Today is `dat e`

" – double qu otes
’ – single qu ote
` - back quot e

17

Another Quoting ExampleAnother Quoting Example
• What do the following statements produce if the

current directory contains the following non-
executable files?

a b c

$ echo *

$ echo l s *

$ echo ` ls * `

$ echo ”l s * ”
$ echo ’l s * ’
$ echo ` *`

" – double q uotes

’ – single q uote

` - back quo t e

18

More on QuotingMore on Quoting

• Command substitution causes another
process to be created.

• Which is better? What is the
difference?

sr c=` ls *.c`

or
sr c=”*. c ”

