Concurrency

Haviland — Ch. 8.3.3

Concurrency Example

* Program a: Programb
#! Jusr/bin/sh #! Jusr/bin/sh
count=1 count=1
while [$count -le 20] while [$count -le 20]
do do
echo -n "a" echo -n "b"
count="expr $count + 1° count="expr $count + 1°
done done

o When run sequentially (a; b) output is sequential.

= When run concurrently (a&; b&) outputis
interspersed and different from run to run.

Concurrency

The two key concepts driving computer
systems and applications are

— communication: the conveying of information from
one entity to another

— concurrency: the sharing of resources in the same
time frame

Concurrency can exist in a single processor

as well as in a multiprocessor system

Managing concurrency is difficult, as
execution behaviour is not always
reproducible.

Race conditions

A race condition occurs when multiple

processes are trying to do something with

shared data and the final outcome depends

on the order in which the processes run.

— E.g., If any code after a fork depends on whether
the parent or child runs first.

A parent process can call wait() to wait for

termination (may block)

A child process can wait for parent to
terminate by polling (wasteful) (How would
you do this?)

Standard solution is to use signals. .

Example 1 Example 2

Process A Process B Process A Process B
x = get(count) y = get(count) X = get(count) y = get(count)
writ e(x + 1) Count writ e(y + 1) writ e(x + 1) Count writ ey + 1)
1 I | _
x= 1 44— x= 1 —p y=1
writ e(2) —» 2 2 | 4— writ e(2)
—p y= 2 —» y= 2
3 44— Wwrit e(3) 3 <4— Wwrit e(3)
. wit e(2) 2 Not what we
The value of count is what we expect. . wanted!
5 6
Example: Race Conditions Producer/Consumer Problem
#! /b i n/sh instances of this
c=1 P— o Simple example: who| wc -
whil e [$c —le 10] » Both the writing process (who) and the
do reading process (wc) of a pipeline execute
sd="cat s haredData Concurrently_
sd="expr $sd +1
echo $sd > sharedD ata églgeflfs usually implemented as an internal
c=expr$ c +1) utter. _
echod= $sd Itis aresource that is concurrently accessed
done by the reader and the writer, so it must be
#fil e sharedD ata muste xistand hold managed carefully.

#one integer

Producer/Consumer

consumer should be blocked when buffer is empty
producer should be blocked when buffer is full

producer and consumer should run independently as
far as buffer capacity and contents permit

producer and consumer should never be updating the
buffer at the same instant (otherwise data integrity
cannot be guaranteed)

producer/consumer is a harder problem if there are
more than one consumer and/or more than one
producer.

Semaphores

» Code that modifies shared data usually
has the following parts:

— Entry section: The code that requests
permission to modify the shared data.

— Critical Section: The code that modifies
the shared variable.

— Exit Section: The code that releases
access to the shared data.

— Remainder: The remaining code.

11

Protecting shared resources

Programs that manage shared resources
must protect the integrity of the shared
resources.

Operations that modify the shared resource
are called critical sections.

Critical section must be executed in a
mutually exclusive manner.

Semaphores are commonly used to protect
critical sections.

Semaphores

e acquire(v)
— block until the value of the semaphore
variable v is greater than 0

—then decrement v

* release(v)
—increment v

10

12

