
1

Concurrency

Haviland – Ch. 8.3.3

2

ConcurrencyConcurrency
• The two key concepts driving computer

systems and applications are
– communication: the conveying of information from

one entity to another
– concurrency: the sharing of resources in the same

time frame

• Concurrency can exist in a single processor
as well as in a multiprocessor system

• Managing concurrency is difficult, as
execution behaviour is not always
reproducible.

3

Concurrency ExampleConcurrency Example
• Program a:
#! /usr/bin/sh
count=1
while [$count -le 20]
do

echo -n " a"
count=`expr $count + 1`

done

• Program b
#! /usr/bin/sh
count=1
while [$count -le 20]
do

echo -n " b"
count=`expr $count + 1`

done

� When run sequentially (a ; b) output is sequential.
� When run concurrently (a& ; b&) output is

interspersed and different from run to run.

4

Race conditionsRace conditions
• A race condition occurs when multiple

processes are trying to do something with
shared data and the final outcome depends
on the order in which the processes run.
– E.g., If any code after a fork depends on whether

the parent or child runs first.

• A parent process can call wait() to wait for
termination (may block)

• A child process can wait for parent to
terminate by polling (wasteful) (How would
you do this?)

• Standard solution is to use signals.

5

Example 1Example 1
Process A

x = get(count)

writ e(x + 1)

Process B

y = get(count)

writ e(y + 1)

x = 1

y = 2

1

2

3

The value of count is what we expect.

Count

writ e(2)

writ e(3)

6

Example 2Example 2
Process A

x = get(count)

writ e(x + 1)

Process B

y = get(count)

writ e(y + 1)

x = 1 y = 11

2

3

writ e(2)

writ e(2)

y = 2

writ e(3)

2 Not what we
wanted!

Count

7

Example: Race ConditionsExample: Race Conditions

#! /b i n/sh
c=1
whil e [$c –l e 10]
do

sd=`cat s haredData `
sd=`expr $sd + 1`
echo $sd > sharedD ata
c=`expr $ c + 1`
echo d = $sd

done
#fil e sharedD ata must e xist and hold
#one integer

Try running several
instances of this

8

Producer/Consumer ProblemProducer/Consumer Problem

• Simple example: who | wc –l

• Both the writing process (who) and the
reading process (wc) of a pipeline execute
concurrently.

• A pipe is usually implemented as an internal
OS buffer.

• It is a resource that is concurrently accessed
by the reader and the writer, so it must be
managed carefully.

9

Producer/ConsumerProducer/Consumer

• consumer should be blocked when buffer is empty

• producer should be blocked when buffer is full

• producer and consumer should run independently as
far as buffer capacity and contents permit

• producer and consumer should never be updating the
buffer at the same instant (otherwise data integrity
cannot be guaranteed)

• producer/consumer is a harder problem if there are
more than one consumer and/or more than one
producer.

10

Protecting shared resourcesProtecting shared resources

• Programs that manage shared resources
must protect the integrity of the shared
resources.

• Operations that modify the shared resource
are called critical sections.

• Critical section must be executed in a
mutually exclusive manner.

• Semaphores are commonly used to protect
critical sections.

11

SemaphoresSemaphores

• Code that modifies shared data usually
has the following parts:
– Entry section: The code that requests

permission to modify the shared data.
– Critical Section: The code that modifies

the shared variable.
– Exit Section: The code that releases

access to the shared data.
– Remainder: The remaining code.

12

SemaphoresSemaphores

• acquire(v)
– block until the value of the semaphore

variable v is greater than 0
– then decrement v

• release(v)
– increment v

