Fall 2005 Midterm Test — Solutions CSC209H1 / L0101

Duration: 50 minutes
Aids Allowed: NONE

Student Number: | L L

Last (Family) Name(s): SOLUTION

First (Given) Name(s):

Tutorial Section: LM157 9S 921928
(cirle one) James Li Yuan Gao

Do not turn this page until you have received the signal to start.
(In the meantime, please fill out the identification section above,
and read the instructions below carefully.)

This test consists of 4 questions on 7 pages (including this one),
printed on one side of the paper. When you receive the signal to
start, please make sure that your copy of the test is complete.

MARKING GUIDE

Answer each question directly on the test paper, in the space pro- # 1 / 8
vided. If you need more space for one of your solutions, use the
reverse side of a page and indicate clearly the part of your work that #2__ /8
should be marked. 4 3 /5
IMPORTANT: You do not need to include the “#!” line in Bourne T
shell scripts you are asked to write. In C programs, you do not # 4 /7
need to add the “#include” lines, nor do error checking unless the
question requires it or the program would not function correctly given TOTAL: /28

valid input without error checking.

Good Luck!

Total Pages = 7 Page 1 CONT'D...

Fall 2005 Midterm Test — Solutions CSC209H1 / L0101

Question 1. [8 MARKS]

Consider the following Bourne shell script named echo.

#!/bin/sh
PATH=/bin:/usr/bin
echo "$1... $1... $1..."

Part (a) [1 MARK]

Alice puts the above echo script in the current working directory and runs the following command ($ is
the shell prompt):

$ echo hello
hello... hello... hello...

Explain why this output could be produced.

The echo script in the current working directory is executed, since . is in the PATH.

Part (b) [l MARK]

Bob also puts the above echo script in the current working directory. He tries the same command, but
gets the following output:

$ echo hello
hello

Explain why this output could be produced.

Either echo is a shell built-in, . is not in the PATH, or . appears after /bin (the location of
the normal echo program) in the PATH.

Part (c) [l MARK]

Does the above echo script call itself (is it recursive)? Explain why or why not.

No. The PATH is reset for the script, so the normal echo command will be executed within
the script (assuming this script isn’t put in /bin in place of the echo program).

Student #: _ , | . . | . Page 2 of 7 CONT'D. ..

Fall 2005 Midterm Test — Solutions CSC209H1 / L0101

Question 1. (coNTINUED)
Part (d) [5 MARKS]

Consider the following C declarations. Write the type of the expressions that follow, or write “invalid” if
the expression is not legal in C. If the type is valid and not a pointer, then give the value of the expression.

struct tut {
char b[10];
int r;
+;
struct tut al3] = {{"LM", 157}, {"SS", 2128}};
struct tut *p = &al[l];

Type Value
struct tut*
a
int 2128
al1]l.r
char L’
a->b[0]
char 'S’
*p—>b
int 157
pl-1].r

Student #: _ , |, . . . Page 3 of 7 CONT'D. ..

Fall 2005 Midterm Test — Solutions CSC209H1 / L0101

Question 2. [8 MARKS)]
Part (a) [3 MARKS]

I need help writing the autotesting scripts for assignment 2. I want to check if the output from a student’s
phonem program is the same as the output from my solution. But the words can be output in any order,
so I can’t simply compare the two outputs.

Help me by writing a Bourne shell script (we’ll call it samelines) that takes two files as command
line arguments, produces no output, and returns true if the two files contain the same lines (regardless of
order), and returns false otherwise.

The command sort filename sorts the lines of filename and outputs the result on the standard
output. The command diff filel file2 outputs the differences between the two files and returns an
exit status of 0 if no differences were found, 1 if some differences were found, and 2 means trouble. You
may use temporary files, and you may assume that your script is run correctly (that two file names are
given and both files exist).

SAMPLE SOLUTION:

#!/bin/sh

sort $1 > tmpl

sort $2 > tmp2

diff tmpl tmp2 > /dev/null

This doesn’t clean up the temporary files. To clean up the temportary files, add the following
lines.

status=$7?
rm -f tmpl tmp2
exit $status

Student #: _ , |, . | | . Page 4 of 7 CONT'D. ..

Fall 2005 Midterm Test — Solutions CSC209H1 / L0101

Question 2. (CoNTINUED)
Part (b) [5 MARKS]

Write a Bourne shell script that uses the samelines script from part (a) to compute how many tests a
student’s program passed. Your script will take a single argument: an integer IV, the number of tests. You
script will, for each 7, 1 <4 < N, use samelines to compare the files student.i and expected.i. Your
script will print a single number, the number of pairs of files that matched.

For example, if your script is executed with the argument “2”, you will compare student.1 with
expected.l and compare student.2 with expected.2, and print either 0, 1 or 2.

SAMPLE SOLUTION:

#!/bin/sh

total=0

i=1

N=$1

while [$i -1le $N 1; do
./samelines student.$i expected.$i
if [$7? -eq 0 1; then

total=‘expr $total + 1°¢

fi
i=‘expr $i + 1°¢

done

echo $total

Student #: _ , | . . | . Page 5 of 7 CONT'D. ..

Fall 2005 Midterm Test — Solutions CSC209H1 / L0101

Question 3. [5 mARKS]

Rewrite the contents of the following C function using pointers and without using array notation and
without using the variables i or j. You may not use any library function calls. You are permitted to
change the pointers dest and src.

void mystrcat(char *dest, char *src)

{
int i, j;
for (i = 0; dest[i] != ’\0’; i++)
; /* do nothing */
for (j = 0; srcl[j]l != ’\O0’; i++, j++)
dest[i] = src[j];
dest[i] = src[jl;
}

SAMPLE SOLUTION:

void mystrcat(char *dest, const char *src)
{
while (*dest)
dest++;
while (*src)
*¥dest++ = *src++;
*dest = *src;

}

Student #: _ , | . . | . Page 6 of 7 CONT'D. ..

Fall 2005 Midterm Test — Solutions CSC209H1 / L0101

Question 4. [7 MARKS]

Suppose the main contents of your phonem. c program are put into the following function:

int print_phonem matches(FILE *dict, const char *string).

The print_phonem matches () function takes a pointer to the open dictionary file and a pointer to the
string to be matched, outputs to stdout all words in the dictionary that match string, and returns the
number of words that were matched.

We wish to compute all two-word combinations that match the input string. Insert below the C code to
complete this task. Assume that the correct dictionary has been opened, the string is valid, and MAXLENGTH
is sufficiently large.

const char *string; /* preset to contents of string */
FILE xdict; /* dictionary is already fopened */
char substr1[MAXLENGTH]; /* copy first piece of string here */
char substr2[MAXLENGTH]; /* copy rest of string here */

/* sample solution */
int i;
int len = strlen(string);
for (i = 1; 1 < len-1; i++) {
strncpy (substrl, string, i); /#* copy prefix of string */
substri[i] = ’\0’; /* and null terminate */
strcpy(substr2, string+i); /* copy rest of string into second substring */

printf ("\nPossible matches for %s-%s\n", substrl, substr2);

printf ("---Possible first words:\n");
rewind(dict); /* rewind starts reading from start of dict */
if (print_phonem_matches(dict, substrl) == 0)
printf ("no words matched %s\n", substrl);
printf ("---Possible second words:\n");
rewind(dict); /* reset to start of dictionary again */
if (print_phonem_matches(dict, substr2) == 0)

printf ("no words matched %s\n", substr2);

Student #: _ , |, . . | . Page 7 of 7 END OF MARKING SCHEME

Fall 2005

C functions for strings:
size_t strlen(const char *s);
int strncmp(const char *sl, const char *s2, size_t n);

char
char
char
char
char

xstrncpy(char *dest, const char *src, size_t n);
xstrncat (char *dest, const char *src, size_t n);
*index(const char *s, int c);

*strchr(const char *s, int c);

xstrstr(const char *haystack, const char *needle)

C functions for files and directories:
int closedir(DIR *dir);
int fclose(FILE *stream);

char
FILE

xfgets(char *s, int n, FILE *stream);
xfopen(const char *file, const char #*mode);

int fprintf(FILE *stream, const char *format, ...);

char

xgetcwd (char *buf, size t size);

DIR *opendir(const char *name) ;

struct dirent *readdir (DIR *dir);

int stat(const char *file name, struct stat *buf);
void perror(const char *s);

struct stat {

dev_t st_dev; /* device */

ino_t st_ino; /* inode */

mode_t st_mode; /* protection */

nlink_t st_nlink; /* number of hard links */
off_t st_size; /* total size, in bytes */

Midterm Test — Cheat Sheet CSC209H1 / L0101

unsigned long st_blksize; /* blocksize for filesystem I/0 */

unsigned long

st_blocks; /* number of blocks allocated */

time_t st_atime; /* time of last access */

time_t st_mtime; /* time of last modification */

time_t st_ctime; /* time of last change */
};
The following POSIX macro functions Shell test comparison operators:
are defined to check the file type (m is Shell Description
the st_mode field of the stat struct): -d filename Exists as a directory
S_ISLNK(m) is it a symbolic link? -f filename Exists as a regular file
S_ISREG(m) regular file? -1 filename Exists as a readable file
S_ISDIR(m) directory? -w filename Exists as a writable file

-x filename Exists as an executable file
-7 string True if empty string

Shell variables: strl = str2 True if strl equals str2
$$ shell process ID strl 1= str2 True if strl not equal to str2
$7 last program exit status intl -eq int2 True if intl equals int2
$# number of arguments -ne, -gt, -ge, -lt, -le | Comparisons for numbers
$x all arguments as string I=, >, >=, <, <= | Comparisons for strings
"$@" all arguments as quoted list -a, -0 And, or

