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Question 1. [10 marks]

Consider the following statement:

(S) When A or B is true, so is C.

Part (a) [2 marks]

What, if anything, can be concluded from (S) if A is true?

Sample Solution

We first note that (S) means (A ∨B) ⇒ C.

Following the implication in (S), we know that C is true. The implication says nothing about
whether B is true or false.

Part (b) [2 marks]

What, if anything, can be concluded from (S) if C is true?

Sample Solution

Nothing! The implication says nothing about A or B (C could be true without either A or B
necessarily being true).

Part (c) [3 marks]

Express symbolically a statement equivalent to (S), but without using implication (⇒).

Sample Solution

We use the implication rule to get an equivalent formula using or:
¬(A ∨B) ∨ C

Part (d) [3 marks]

Express symbolically a statement equivalent to (S), but without using disjunction (∨).

Sample Solution

We use DeMorgan’s laws to replace the or with an and: ¬(¬A ∧ ¬B) ⇒ C
Or we use our answer from (c) + DeMorgan’s law: (¬A ∧ ¬B) ∨ C
Or we use the contrapositive + DeMorgan’s law: ¬C ⇒ (¬A ∧ ¬B)
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Question 2. [6 marks]

Let U be some universe containing sets A, B and C. Let A(x) mean x ∈ A, B(x) mean x ∈ B, and C(x)
mean x ∈ C.

For each of the following statements, draw a Venn diagram with overlapping circles for A, B and C,
making 8 regions. Shade in all the regions where the statement is true, and put an X in each region where
the statement is false.

When A or B is true, so is C.

Sample Solution

∀x ∈ U,
(
A(x) ∨ ¬B(x)

)
⇒

(
B(x) ⇔ C(x)

)

Sample Solution

An X should appear in each of the three regions A ∩B − C and A ∩ C −B and C −A−B.
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Question 3. [10 marks]

Let S be the set of Hollywood movie stars, and let a(x, y) mean “movie star x admires movie star y.”
Express each of the following statements symbolically, matching the English form as closely as possible.

Part (a) [2 marks]

Some movie star admires himself/herself.

Sample Solution

∃x ∈ S, a(x, x)

Part (b) [3 marks]

Some movie stars have no admirers.

Sample Solution

∃x ∈ S,¬∃y ∈ S, a(y, x)
or
∃x ∈ S,∀y ∈ S,¬a(y, x)

Part (c) [2 marks]

All movie stars admire Sidney Poitier.

Sample Solution

∀x ∈ S, a(x, SP )
where SP stands for Sidney Poitier, a movie star (SP ∈ S).

Part (d) [3 marks]

Every movie star is admired by another movie star.

Sample Solution

∀x ∈ S,∃y ∈ S, x 6= y ∧ a(y, x)
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Question 4. [10 marks]

Consider the following statement about sequences of natural numbers a0, a1, a2, . . .
(recall that N = {0, 1, 2, . . . }):

(T) ∀i ∈ N,∃k ∈ N, (ai < i ⇒ ak > i)

Part (a) [2 marks]

Write the negation of (T) symbolically, moving negations inside as much as possible.

Sample Solution

∃i ∈ N,∀k ∈ N, ai < i ∧ ak ≤ i

Part (b) [6 marks]

For each of the following sequences, state whether (T) is true or false. Justify your claim, using an example
or counterexample when appropriate.

1, 2, 3, 4, 5, 6, 7, . . .

Sample Solution

True. Given any element i ∈ N, ai < i is false. Hence, no matter which element k ∈ N we pick,
the implication is true. Thus (T) is true (the universally quantified implication is vacuously
true).

2, 2, 2, 2, 2, 2, 2, . . .

Sample Solution

False. We will show the negation of (T) is true (thus showing that (T) itself must be false).
Pick i = 3 (or any value greater than 3). Then no matter what value we choose for k, both
ai < i is true (since ai = 2 always) and ak ≤ i (since ak = 2 always).

Part (c) [2 marks]

Write the converse of (T) symbolically, moving negations inside as much as possible.

Sample Solution

∀i ∈ N,∃k ∈ N, ak > i ⇒ ai < i
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