
University of Toronto, St. George Campus CSC 165H1F
Department of Computer Science Fall 2007

Quiz #9 Sample Solutions

We want to prove the following statement:

T (n) ∈ O(n)

where T (n) is the worst case number of lines executed by the algorithm on an array of length n.

We construct the standard proof structure and fill it in, choosing values for c and B when needed:

Let c = 6. Then c ∈ R+.
Let B = 1. Then B ∈ N.

Let n ∈ N be arbitrary.
Assume n ≥ B.

From the algorithm, the loop executes no more than n/2 times on an array of n
integers.
In a single iteration of the loop, no more than 5 lines are executed (the if statement
and the increment of i) in the body, plus the while statement itself.
Also, 2 lines are executed before the loop, and we need to count the while line when
the test fails.
Thus, T (n) ≤ 2 + (n/2)× 6 + 1 ≤ 3n + 3 ≤ 6n (since n ≥ 1).
[we go back and fill in values for c and B now]
So T (n) ≤ cn.

So n ≥ B ⇒ T (n) ≤ cn.
Since n is an arbitrary element of N, ∀n ∈ N, n ≥ B ⇒ T (n) ≤ cn.

Since B is a natural number, ∃B ∈ N,∀n ∈ N, n ≥ B ⇒ T (n) ≤ cn.
Since c is a real positive number, ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ T (n) ≤ cn.
By definition, T (n) ∈ O(n).

Note that many other values for c and B also work. We need to be careful that in our count of lines that
could be executed, we truly over-estimate (or exactly count) the number of lines that could actually be
executed by the algorithm running on a real input.
If we were trying to prove T (n) ∈ Ω(n), then we would find an actual input array A on which the algorithm
executed more than cn lines (for some c), thus showing T (n) ≥ t(A) ≥ cn. In our proof that T (n) ∈ O(n)
though, showing how long the algorithm takes on a specific input is not useful (even if we showed it took
less than cn lines), since the worst case is bigger than that (and possibly bigger than cn), i.e., the inequality
goes the wrong way.


