University of Toronto, St. George Campus Department of Computer Science

Quiz #8 Sample Solutions

We want to prove the following statement:

 $2n\sqrt{n} \notin O(n+4)$

We first write what we need to prove (the negation of the property for big-O):

 $\forall c \in \mathbb{R}^+, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \ge B \land 2n\sqrt{n} > c(n+4)$

We construct the standard proof structure:

```
Assume c \in \mathbb{R}^+.

Assume B \in \mathbb{N}.

Let n = \_.

Then n \in \mathbb{N}.

Thus n \ge B.

:

Thus 2n\sqrt{n} > c(n+4).

So n \ge B \land 2n\sqrt{n} > c(n+4). (by \land I)

Thus \exists n \in \mathbb{N}, n \ge B \land 2n\sqrt{n} > c(n+4). (by \exists I)

Since B is an arbitrary element of \mathbb{N}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \ge B \land 2n\sqrt{n} > c(n+4). (by \forall I)

Since c is an arbitrary element of \mathbb{R}^+, \forall c \in \mathbb{R}^+, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \ge B \land 2n\sqrt{n} > c(n+4). (by \forall I)
```

By definition, $2n\sqrt{n} \notin O(n+4)$.

We need to find a value for n that will work. We do some scratch work:

To show:
$$2n\sqrt{n} > c(n+4)$$

We need: $2n\sqrt{n} > c(n+n) = 2cn \pmod{n \ge 4}$
So: $\sqrt{n} > c \pmod{n \ge 2n}$
 $n > c^2 \pmod{10}$ (need $n \ge 4$)

So we must pick n such that $n \ge 4$ and $n > c^2$ (also, we need $n \ge B$ for the proof structure). Picking $n = \max\{c^2 + 1, B, 4\}$ will do. We turn our scratch work upside-down and turn it into a proof (remember, we only want to write true things in a proof!).

We fill in the : with:

Then $c > c^2$. (since $c \ge c^2 + 1$) So $\sqrt{n} > c$. (taking square root of each side) Then $2n\sqrt{n} > 2n \cdot c$. (multiplying both sides by 2n) Now $2n \cdot c = c(n+n) \ge c(n+4)$. (since $n \ge 4$) Thus $2n\sqrt{n} > c(n+4)$. (by transitivity of >)

This completes the proof.