
Chapter 6

Correctness, running time of

programs

So far we have been proving statements about databases, mathematics and arithmetic, or sequences of

numbers. Though these types of statements are common in computer science, you'll probably encounter

algorithms most of the time. Often we want to reason about algorithms and even prove things about them.

Wouldn't it be nice to be able to prove that your program is correct? Especially if you're programming a

heart monitor or a NASA spacecraft?

In this chapter we'll introduce a number of tools for dealing with computer algorithms, formalizing their

expression, and techniques for analyzing properties of algorithms, so that we can prove correctness or prove

bounds on the resources that are required.

6.1 Binary (base 2) notation

Let's �rst think about numbers. In our everyday life, we write numbers in decimal (base 10) notation

(although I heard of one kid who learned to use the �ngers of her left hand to count from 0 to 31 in base

2). In decimal, the sequence of digits 20395 represents (parsing from the right):

5 + 9(10) + 3(100) + 0(1000) + 2(10000) =

5(100) + 9(101) + 3(102) + 0(103) + 2(104)

Each position represents a power of 10, and 10 is called the base. Each position has a digit from [0; 9]

representing how many of that power to add. Why do we use 10? Perhaps due to having 10 �ngers

(however, humans at various times have used base 60, base 20, and mixed base 20,18 (Mayans)). In the last

case there were (105)20;18 days in the year. Any integer with absolute value greater than 1 will work (so

experiment with base �2).

Consider using 2 as the base for our notation. What digits should we use?1 We don't need digits 2 or

higher, since they are expressed by choosing a di�erent position for our digits (just as in base 10, where

there is no single digit for numbers 10 and greater).

Here are some examples of binary numbers:

(10011)2

6-1

represents

1(20) + 1(21) + 0(22) + 0(23) + 1(24) = (19)10

We can extend the idea, and imitate the decimal point (with a \binary point"?) from base 10:

(1011:101)2 = 19
5

8

How did we do that?2 Here are some questions:

� How do you multiply two base 10 numbers?3 Work out 37� 43.

� How do you multiply two binary numbers?4

� What does \right shifting" (eliminating the right-most digit) do in base 10?5

� What does \right shifting" do in binary?6

� What does the rightmost digit tell us in base 10? In binary?

Convert some numbers from decimal to binary notation. Try 57. We'd like to represent 57 by adding either

0 or 1 of each power of 2 that is no greater than 57. So 57 = 32 + 16 + 8 + 1 = (111001)2. We can also �ll

in the binary digits, systematically, from the bottom up, using the % operator (the remainder after division

operator, at least for positive arguments):

57%2 = 1 so (?????1)2

(57� 1)=2 = 28%2 = 0 so (????01)2

28=2 = 14%2 = 0 so (???001)2

14=2 = 7%2 = 1 so (??1001)2

(7� 1)=2 = 3%2 = 1 so (?11001)2

(3� 1)=2 = 1%2 = 1 so (111001)2

Addition in binary is the same as (only di�erent from...) addition in decimal. Just remember that

(1)2 + (1)2 = (10)2. If we add two binary numbers, this tells us when to \carry" 1:

1011

+ 1011

10110

log2

How many 5-digit binary numbers are there (including those with leading 0s)? These numbers run from

(00000)2 through (11111)2, or 0 through 31 in decimal | 32 numbers. Another way to count them is to

consider that there are two choices for each digit, hence 25 strings of digits. If we add one more digit we get

twice as many numbers. Every digit doubles the range of numbers, so there are two 1-digit binary numbers

(0 and 1), four 2-digit binary numbers (0 through 3), 8 3-digit binary numbers (0 through 7), and so on.

Reverse the question: how many digits are required to represent a given number. In other words, what

is the smallest integer power of 2 needed to exceed a given number? log2 x is the power of 2 that gives

2log2 x = x. You can think of it as how many times you must multiply 1 by 2 to get x, or roughly the number

of digits in the binary representation of x. (The precise number of digits needed is b(log2 x) + 1c, which is

equal to (why?) blog2 xc+ 1).

6-2

6.2 Proving the correctness of programs

We often want to write computer programs that are correct: programs that actually do what we want them

to do. (Unfortunately a lot of software and hardware out there don't work correctly, and you have probably

experienced the frustrations of dealing with incorrect programs.) We want to be sure that our program

works correctly. Ideally, we would like to be able to prove to someone that our program is correct, especially

if someone's life might depend on it. We will now demonstrate some of the tools we can use to prove facts

about a program by examining a basic example.

Loop invariant for base 2 multiplication

Integers are naturally represented on a computer in binary, since a gate can be in either an on or o� (1 or

0) position. It is very easy to multiply or divide by 2, since all we need to do is perform a left or right shift

(an easy hardware operation). Similarly, it is also very easy to determine whether an integer is even or odd.

Putting these together, we can write a multiplication algorithm that uses these fast operations:

public class MultiplicationExample {

/**

* mult multiplies m times n.

* @arg m a natural number

* @arg n an integer

* @return mn

* precondition: m >= 0

*/

public static int mult(int m, int n) {

int x = m;

int y = n;

int z = 0;

// loop invariant: z = mn - xy

while (x != 0) {

if (x % 2 == 1) { // x odd

z = z + y;

}

x = x >> 1; // x = x div 2 (right shift)

y = y << 1; // y = 2y (left shift)

}

// post condition: z = mn

return z;

}

}

After reading this algorithm, there is no reason you should believe it actually multiplies two integers:

we'll need to prove it to you. Let's consider the precondition �rst. We can always ensure that m � 0

(how?7). The postcondition states that z, the value that is returned, is equal to the product of m and n

(that would be nice, but we're not convinced).

Let's look at the stated loop invariant. A loop invariant is a relationship between the variables that is

always true at the start and at the end of a loop iteration (we'll need to prove this). It's su�cient to verify

6-3

that the invariant is true at the start of �rst iteration, and verify that if the invariant is true at the start of

any iteration, it must be true at the end of the iteration.8 Before we start the loop, we set x = m, y = n

and z = 0, so it is clear that z = mn � xy = mn �mn = 0. Now we need to show that if z = mn � xy

before executing the body of the loop, and x 6= 0, then after executing the loop body, z = mn� xy is still

true (can you write this statement formally?). Here's a sketch of a proof:

Let x0; y0; z0; x00; y00; z00;m; n 2 Z, and assume the 0 elements related to the 00 elements by the action of

the loop. Assume m � 0. Observe that the values of m and n are never changed in the loop.

Assume z0 = mn� x0y0.

Case 1: x0 odd.

Then z00 = z0 + y0, x00 = (x0 � 1)=2, and y00 = 2y0.

So

mn� x00y00 = mn� (x0 � 1)=2 � 2y0 (since x0 is odd)

= mn� x0y0 + y0

= z0 + y0

= z00

Case 2: x0 even.

Then z00 = z0, x00 = x0=2, and y00 = 2y0.

So

mn� x00y00 = mn� x0=2 � 2y0

= mn� x0y0

= z0

= z00

Since x0 is either even or odd, in all cases mn� x00y00 = z00

Thus mn� x0y0 = z0) mn� x00y00 = z00.

Since x0; x00; y0; y00; z0; z00;m; n are arbitrary elements of Z,

8x0; x00; y0; y00; z0; z00;m; n 2 Z;mn� x0y0 = z0) mn� x00y00 = z00.

We should probably verify the postcondition to fully convince ourselves of the correctness of this algo-

rithm. We've shown the loop invariant holds, so let's see what we can conclude when the loop terminates

(i.e., when x = 0). By the loop invariant, z = mn� xy = mn� 0 = mn, so we know we must get the right

answer (assuming the loop eventually terminates).

We should now be fairly convinced that this algorithm is in fact correct.9 One might now wonder, how

many iterations of the loop are completed before the answer is returned?

6.3 Expressing the running time of programs

For any program P and any input x, let tP (x) denote the number of \steps" P takes on input x. We need to

specify what we mean by a \step." A \step" typically corresponds to machine instructions being executed,

or some indication of time or resources expended.

Consider the following (somewhat arbitrary) accounting for common program steps:

method call: 1 step + steps to evaluate each argument, + steps to execute the method.

return statement: 1 step + steps to evaluate return value.

6-4

if statement: 1 step + steps to evaluate condition.

assignment statement: 1 step + steps to evaluate each side.

arithmetic, comparison, boolean operators: 1 step + steps to evaluate each operand.

array access: 1 step + steps to evaluate index.

member access: 2 steps.

constant, variable evaluation: 1 step.

Let's use this accounting scheme to study the running time of a familiar algorithm.

6.3.1 Linear search

Let's consider the following implementation of linear search as an example.

// A is an array, x is an element to search for.

// Return an index i such that A[i] = x;

// if there is no such index, return �1.

// Convention: array indices start at 0

LS (A, x) {

1. i = 0; // 3 steps (evaluate variable, constant, assignment)

2. while (i < A.length) { // 5 steps (while, A.length (2 steps), i, <)

3. if (A[i] == x) { // 5 steps (A[i], ==, x, if)

4. return i; // 2 steps (return, i)

5. }

6. i = i + 1; // 5 steps (i, assignment, i, +, 1)

7. }

8. return -1; // 2 steps (return, �1)

9. }

Now let's trace a function call, LS([2,4,6,8],4):

Line 1: 3 steps (i = 0)

Line 2: 5 steps (0 < 4)

Line 3: 5 steps (A[0] == 4)

Line 6: 5 steps (i = 1)

Line 2: 5 steps (1 < 4)

Line 3: 5 steps (A[1] == 4)

Line 4: 2 (return 1)

6-5

So tLS([2; 4; 6; 8]; 4) = 30. Notice that if the �rst index where x is found is j, then tLS(A; x) will count

lines 2, 3, and 6 once for each index from 0 to j � 1 (j indices), and then count lines 2, 3, 4 for index j, and

so tLS(A; x) will be 3 + 15j + 12 = 15(j + 1).

If x does not appear in A, then tLS(A; x) = 3+15A:length+7 = 15A:length+10, because line 1 executes

once, lines 2,3, and 6 execute for each index from 0 to A:length� 1 (A:length indices), and then lines 2 and

8 execute.

We want a measure that depends on the size of the input, not the particular input. There are three

standard ways. Let P be a program, and let I be the set of all inputs for P . Then:

Best-case complexity: min(tP (x)), where x is an input of size n.

In other words, BP (n) = minftP (x) j x 2 I ^ size(x) = ng.

Worst-case complexity: max(tP (x)), where x is an input of size n.

In other words, WP (n) = maxftP (x) j x 2 I ^ size(x) = ng.

Average-case complexity: the weighted average over all possible inputs of size n.

Assuming all the inputs are equally likely,

AP (n) =

P
x of size n tP (x)

number of inputs of size n

Best-case: mostly useless. Average-case: di�cult to compute. Worst-case: easier to compute, and gives

a performance guarantee.

What is meant by \input size"? This depends on the algorithm. For linear search, the number of elements

in the array is a reasonable parameter. Technically (in CSC363, for example), the size is the number of bits

required to represent the input in binary. In practice we use the number of elements of input (length of

array, number of nodes in a tree, etc.) since this di�ers from the number of bits only by a constant factor.

Remember that if we're using asymptotic notation to bound run times, multiplicative constants usually

don't matter too much (they'll get absorbed into the c).

What is the best-case for linear search?10 What about the worst-case for linear search?11 The average-

case for linear search?12 Once we've answered these questions, we can use the machinery of Big-O. Suppose

U is an upper bound on the worst-case running time of some program P , denoted TP (n):

TP 2 O(U)

,

9c 2 R+; 9B 2 N; 8n 2 N; n � B) TP (n) � cU(n)

,

9c 2 R+; 9B 2 N; 8n 2 N; n � B) maxftP (x) j x 2 I ^ size(x) = ng � cU(n)

,

9c 2 R+; 9B 2 N; 8n 2 N; n � B) 8x 2 I; size(x) = n) tP (x) � cU(n)

,

9c 2 R+; 9B 2 N; 8x 2 I; size(x) � B) tP (x) � cU(size(x))

So to show that TP 2 O(U(n)), you need to �nd constants c and B and show that for an arbitrary input x

of size n, P takes at most c � U(n) steps.

In the other direction, suppose L is a lower bound on the worst-case running time of algorithm P :

TP 2
(L)

,

9c 2 R+; 9B 2 N; 8n 2 N; n � B) maxftP (x) j x 2 I ^ size(x) = ng � cL(n)

,

9c 2 R+; 9B 2 N; 8n 2 N; n � B) 9x 2 I; size(x) = n ^ tP (x) � cL(n)

6-6

So, to prove that Tp 2
(L), we have to �nd constants c, B and for arbitrary n, �nd an input x of size

n, for which we can show that P takes at least cL(n) steps on input x.

6.3.2 Insertion sort

Here is an intuitive13 sorting algorithm:

// A is an array of comparable elements

// that will be rearranged (sorted) in non-decreasing order

IS (A) {

1. i = 1;

2. while (i < A.length) {

3. t = A[i];

4. j = i;

5. while (j > 0 && A[j-1] > t) {

6. A[j] = A[j-1];

7. j = j-1;

8. }

9. A[j] = t;

10. i = i+1;

11. }

12. }

Since we last computed running time, we have become lazier. We could use the list from last time for

the number of steps of each expression, and we'd �nd that there are between 3 and 11 steps for the lines in

the program above. Since we are interested in big-O comparisons, that four-fold di�erence in steps will be

absorbed into our multiplicative constants, so a better use of our time would be to count each line as one

step.14

Let's �nd an upper bound for TIS(n), the maximum number of steps to Insertion Sort an array of size

n. We'll use the proof format to prove and �nd the bound simultaneously | during the course of the proof

we can �ll in the necessary values for c and B.

We show that TIS(n) 2 O(n2) (where n = A:length):

Let c = . Let B = .

Then c 2 R+ and B 2 N.

Let n 2 N, and let A be an array of length n, and assume n � B.

So lines 5{7 execute at most n times, for 3n steps, plus 1 step for the last loop test.

So lines 2{11 take less than n(6 + 3n) + 1 = 6n+ 3n2 + 1 steps.

So 3n2+6n+1 � cn2 (�ll in the values of c and B that makes this so | setting c = 10; B = 1

should do).

So n � B) TIS(n) � cn2.

Since n is the length of an arbitrary array A and a natural number, 8n 2 N; n � B) TIS(n) � cn2

(so long as B � 1).

Since c is a positive real number and B is a natural number, 9c 2 R
+; 9B 2 N; 8n 2 N; n � B)

TIS(n) � cn2.

So TIS 2 O(n2) (by de�nition of O(n2)).

Similarly, we prove a lower bound. Speci�cally, TIS 2
(n2):

6-7

Let c = . Let B = .

Then c 2 R+ and B 2 N.

Let n 2 N, and let A = [n� 1; : : : ; 1; 0] (notice that this means n � 1). Assume n � B.

Note that at any point during the outside loop, A[0::(i � 1)] contains the same elements as

before but sorted (i.e., no element from A[(i+1)::(n� 1)] has been examined yet). Since the

value A[i] is less than all the values A[0::(i� 1)], by construction of the array, the inner while

loop makes i iterations, at a cost of 3 steps per iteration, plus 1 for the �nal loop check. This

is strictly greater than 2i + 1, or greater than or equal to 2i + 2., so (since the outer loop

varies from i = 1::i = n� 1 and we have n� 1 iterations of lines 3 and 4, plus one iteration

of line 1), we have that tIS(n) � 1 + 3 + 5 + � � �+ (2n� 1) + (2n+ 1) = n2 (the sum of the

�rst n odd numbers), so long as n is at least 4.

So n � B) TIS(n) � cn2 (setting B = 4; c = 1 will do).

So there is some array A of size n such that tIS(A) � cn2.

Since n was an arbitrary natural number, 8n 2 N; n � B) TIS(n) � cn2.

Since c 2 R+ and B is a natural number, 9c 2 R+; 9B 2 N; 8n 2 N; n � B) TIS(n) � cn2.

So TIS 2
(n2) (de�nition of
(n2)).

From these proofs, we conclude that TIS 2 �(n2).

Exercises

1. We determined that the running time for linear search LS(A; x) looking for x in an array A of length

n, denoted tLS(A; x), was:

� tLS(A; x) = 15 if A[0] = x (best case).

� tLS(A; x) = 15n+ 10, if x is not in the array (worst case).

Let TLS(n) = maxftLS(A; x) j A has length ng.

(a) Is TLS(n) 2 O(n)?15

(b) Is TLS(n) 2 O(1
n
)?16

(c) Is TLS(n) 2 O(n2)?

(d) Is TLS(n) 2 O(2n)?

(e) Is TLS(n) 2
(1
n+1

)?

2. Consider the following method that was recently posted to a newsgroup:

void f(int k) {

if (k < 100) {

FunctionOne(k); //O(n)

} else {

int i;

for(i=0; i<10; i++)

FunctionTwo(k); //O(log n)

}

}

6-8

Let n = blog2 kc + 1 be the size of the input k (the number of bits needed to represent the value

k). Assume that FunctionOne() always takes �(n) time to execute, and that FunctionTwo() always

takes �(logn) time to execute.

Let Tf(n) be the maximum time to execute f on input of size n. Determine a function g such that

Tf 2 �(g), and prove your answer.17

6-9

Chapter 6 Notes

1From 0 to (2� 1), if we work in analogy with base 10.

2To parse the 0:101 part, calculate 0:101 = 1(2�1) + 0(2�2) + 1(2�3).

3You should be able to look up this algorithm in an elementary school textbook.

4Same as the previous exercise, but only write numbers that have 0's and 1's, and do binary addition.

5Integer divides by 10.

6Integer divide by 2.

7If only one of m;n are negative, ensure n is the negative one, perhaps by swapping. If both of m;n are

negative, negate both of them and then call mult.

8This is the principle of mathematical induction, which you'll study in detail in CSC 236.

9As long as the loop eventually terminates! How would we prove that this happens?

1015 steps, when A[0] == x.

1115n+ 10, where n = A:length.

12Inputs at index 0 through n� 1, plus missing value equally likely (n+ 1) input categories, so

�Pn�1

i=0 15(i+ 1)
�
+ 15n+ 10

n+ 1
=

15n(n+ 1)=2 + 15n+ 10

n+ 1

=
7:5n(n+ 1) + 15n+ 10

n+ 1

=
7:5n(n+ 1) + 15n+ 10

n+ 1
= 7:5n+

15n+ 10

n+ 1
:

13but not particularly e�cient...

14Technically, we'll bound the number of steps performed on each line by some constant k, so each line

costs at most k. When we bound the growth rate using asymptotic notation, k will be absorbed into c, so

it's like each line costs only one step.

Note that this only works when each line does only a constant amount of work: we'll need to deal with

any lines that do more more than a constant amount of work separately (such as method calls).

15Yes. If n � 10 and c = 16, then TLS(n) = 15n+ 10 � 16n.

16No. There is no constant that will make 15n+ 10 � c=n, once n is somewhat greater than 16c.

17You picked g(n) = logn, I hope. What value do you pick for B in your proof?

6-10

