
Chapter 5

Analyzing Algorithms

5.1 Run time and constant factors

When calculating the running time of a program, we may know how many basic \steps" it takes as a function

of input size, but we may not know how long each step takes on a particular computer. We would like to

estimate the overall running time of an algorithm while ignoring constant factors (like how fast the CPU

is). So, for example, if we have 3 machines, where operations take 3�s, 8�s and 0.5�s, the three functions

measuring the amount of time required, t(n) = 3n2, t(n) = 8n2, and t(n) = n2=2 are considered the same,

ignoring (\to within") constant factors (the time required always grows according to a quadratic function

in terms of the size of the input n).

The nice thing is that this means that lower order terms can be ignored as well! So f(n) = 3n2 and

g(n) = 3n2 + 2 are considered \the same", as are h(n) = 3n2 + 2n and j(n) = 5n2. Notice that

8n 2 N; n � 1) f(n) � g(n) � h(n) � j(n)

but there's always a constant factor that can reverse any of these inequalities.

Really what we want to measure is the growth rate of functions (and in computer science, the growth

rate of functions that bound the running time of algorithms). You might be familiar with binary search and

linear search (two algorithms for searching for a value in a sorted array). Suppose one computer runs binary

search and one computer runs linear search. Which computer will give an answer �rst, assuming the two

computers run at roughly the same CPU speed? What if one computer is much faster (in terms of CPU

speed) than the other, does it a�ect your answer? What if the array is really, really big?

How large is \sufficiently large?"

Is binary search a better algorithm than linear search?1 It depends on the size of the input. For example,

suppose you established that linear search has complexity L(n) = 3n and binary search has complexity

B(n) = 9 log2 n. For the �rst few n, L(n) is smaller than B(n). However, certainly for n > 10, B(n) is

smaller, indicating less \work" for binary search.

When we say \large enough" n, we mean we are discussing the asymptotic behaviour of the complexity

function, and we are prepared to ignore the behaviour near the origin.
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5.2 Asymptotic notation: Making Big-O precise

We de�ne R�0 as the set of nonnegative real numbers, and de�ne R+ as the set of positive real numbers.

Now here's the precise de�nition of \The set of functions that, ignoring a constant, are eventually no more

than f":

Definition: For any function f : N! R
�0 (i.e., any function mapping naturals to nonnegative reals), let

O(f) = fg : N! R
�0 j 9c 2 R+; 9B 2 N; 8n 2 N; n � B ) g(n) � cf(n)g:

Saying g 2 O(f) says that \g grows no faster than f" (or equivalently, \f is an upper bound for g), so

long as we modify our understanding of \growing no faster" and being an \upper bound" with the practice

of ignoring constant factors. Now we can prove some theorems.

Suppose g(n) = 3n2 + 2 and f(n) = n2. Then g 2 O(f). We need to prove that 9c 2 R+; 9B 2 N; 8n 2
N; n � B ) 3n2 + 2 � cn2. It's enough to �nd some c and B that \work" in order to prove the theorem.

Finding c means �nding a factor that will scale n2 up to the size of 3n2+2. Setting c = 3 almost works,

but there's that annoying additional term 2. Certainly 3n2+2 < 4n2 so long as n � 2, since n � 2) n2 > 2.

So pick c = 4 and B = 2 (other values also work, but we like the ones we thought of �rst). Now concoct a

proof of

9c 2 R+; 9B 2 N; 8n 2 N; n � B ) 3n2 + 2 � cn2:

Let c = 4.

Then c 2 R+.

Let B = 2.

Then B 2 N.
Assume n 2 N. (we assume that n is an arbitrary natural number)

Assume n � B.

Then n2 � B2 = 4. (squaring is monotonic on natural numbers)

So n2 � 2.

So 3n2 + n2 � 3n2 + 2. (adding 3n2 to both sides of the inequality)

So 3n2 + 2 � 4n2.

Thus, n � B ) 3n2 + 2 � 4n2. (by )I)

Since n is an arbitrary natural number, 8n 2 N; n � B ) 3n2 + 2 � 4n2. (by 8I)
Since B is a natural number, 9B 2 N; 8n 2 N; n � B ) 3n2 + 2 � cn2. (by 9I)
Since c is a positive real number, 9c 2 R+; 9B 2 N; 8n 2 N; n � B ) 3n2 + 2 � cn2. (by 9I)

So, by de�nition, g 2 O(f).

Now suppose that g(n) = n4 and f(n) = 3n2. Is g 2 O(f)? No. We can see intuitively that any constant

that we multiply times 3n2 will be overwhelmed by the extra factor of n2 in g(n). But to show this clearly,

we negate the de�nition and then prove the negation:

8c 2 R+; 8B 2 N; 9n 2 N; n � B ^ n4 > c3n2:

The parameter we have some control over is n, and we need to pick it so that n � B and n4 > c3n2.

Solve for n:

n4 > c3n2

, n4=n2 > c3n2=n2 (when n > 0)

, n2 > 3c

, n >
p
3c:
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Notice that we were reasoning backwards (bottom up) here: we need to pick a condition on n so that

n4 > c3n2 would hold (hence why everything had to be an equivalence). Notice also that we needed to

assume that n > 0 (to avoid division by zero). So to satisfy the conditions, we can set n = B + dp3ce+ 1.

Since
p
3c is not necessarily a natural number, we take its ceiling. Now we can generate the proof.

Assume c 2 R+.

Assume B 2 N.
Let n = B + dp3ce+ 1.

Then n 2 N. (since B 2 N, 1 2 N, and dp3ce 2 N (since c > 0) and N is closed under sums).

So n � B (since it is the sum of B and two other non-negative numbers).

So n � dp3ce+ 1. (since B � 0)

So n2 > (dp3ce)2. (dropping a positive term, squaring both sides)

So n2 > 3c. (dropping the ceiling)

So n4 > 3cn2. (multiplying both sides by n2)

Since n is a natural number, 9n 2 N; n � B ^ n4 > c3n2. (by 9I)
Since B is an arbitrary element of N, 8c 2 R+; 8B 2 N; 9n 2 N; n � B ^ n4 > c3n2. (by 9I)

Since c is an arbitrary element of R+, 8c 2 R+; 8B 2 N; 9n 2 N; n � B ^ n4 > c3n2. (by 9I)
By de�nition, this means that g =2 O(f).

a more complex example

Let's prove that 2n3 � 5n4 + 7n6 is in O(n2 � 4n5 + 6n8). We begin with:

Let c = . Then c 2 R+.

Let B = . Then B 2 N.
Assume n 2 N.

Assume n � B.

Then 2n3 � 5n4 + 7n6 � � � � � c(n2 � 4n5 + 6n8).

Thus n � B ) 2n3 � 5n4 + 7n6 � c(n2 � 4n5 + 6n8).

Since n is an arbitrary natural number, 8n 2 N; n � B ) 2n3 � 5n4 + 7n6 � c(n2 � 4n5 + 6n8).

Since B is a natural number, and since c is a positive real number,

9c 2 R+; 9B 2 N; 8n 2 N; n � B ) 2n3 � 5n4 + 7n6 � c(n2 � 4n5 + 6n8).

To �ll in the � � � we try to form a chain of inequalities, working from both ends, simplifying the expressions:

2n3 � 5n4 + 7n6 � 2n3 + 7n6 (drop �5n4 because it doesn't help us in an important way)

� 2n6 + 7n6 (increase n3 to n6 because we have to handle n6 anyway)

= 9n6

� 9n8 (simpler to compare)

= 2(9=2)n8 (get as close to form of the simpli�ed end result: now choose c = 9=2)

= 2cn8

= c(�4n8 + 6n8) (reading bottom up: decrease �4n5 to �4n8 because we have to
handle n8 anyway)

� c(�4n5 + 6n8) (reading bottom up: drop n2 because it doesn't help us in an

important way)

� c(n2 � 4n5 + 6n8)

We never needed to restrict n in any way beyond n 2 N (which includes n � 0), so now �ll in c = 9=2,

b = 0, and complete the proof.
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Let's use this approach to reprove n4 =2 O(3n2).

Assume c 2 R+.

Assume B 2 N.
Let n = .

� � �
So n 2 N.
� � �
So n � B.

� � �
So n4 > c3n2.

Thus 8c 2 R+; 8B 2 N; 9n 2 N; n � B ^ n4 > c3n2.

Here's our chain of inequalities (the third � � � ):

And n4 � n3 (don't need full power of n4)

= n � n2 (make form as close as possible)

> c � 3n2 (if we make n > 3c and n > 0):

Now pick n = max(B; d3c+ 1e).
The �rst � � � is:

Since c > 0, 3c+ 1 > 0, so d3c+ 1e 2 N.
Since B 2 N, max(B; d3c+ 1e) 2 N.

The second � � � is:
max(B; d3c+ 1e) � B.

We also note just before the chain of inequalities:

n = max(B; d3c+ 1e) � d3c+ 1e � 3c+ 1 > 3c.

Some points to note are:

� Don't \solve" for n until you've made the form of the two sides as close as possible.

� You're not exactly solving for n: you are �nding a condition of the form n > that makes the desired

inequality true. You might �nd yourself using the max function a lot.

� Be careful that you aren't \solving" for n in the wrong direction: the �rst time we reasoned that

n4 > c3n2 ) n >
p
3c, but the proof needs the reverse direction. Luckily, each of the steps were

reversible (i.e., they were all equivalences), yielding the needed line of reasoning.

5.3 Other asymptotic notations: 
 and �

In analogy with O(f), consider two other de�nitions:

Definition: For any function f : N! R
�0, let


(f) = fg : N! R
�0 j 9c 2 R+; 9B 2 N; 8n 2 N; n � B ) g(n) � cf(n)g:

To say \g 2 
(f)" expresses the concept that \g grows at least as fast as f ." (f is a lower bound on g).
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Definition: For any function f : N! R
�0, let

�(f) = fg : N! R
�0 j 9c1 2 R+; 9c2 2 R+; 9B 2 N; 8n 2 N; n � B ) c1f(n) � g(n) � c2f(n)g:

To say \g 2 �(f)" expresses the concept that \g grows at the same rate as f ." (f is a tight bound for

g, or f is both an upper bound and a lower bound on g).

5.4 Mathematical induction

Suppose P (n) is some predicate of the natural numbers, and:

(�) P (0) ^ (8n 2 N; P (n)) P (n+ 1)):

You should certainly be able to show that (*) implies P (0), P (1), P (2), in fact P (n) where n is any natural

number you have the patience to follow the chain of results to obtain. In fact, we feel that we can \turn the

crank" enough times to show that (*) implies P (n) for any natural number n. In other words,

[P (0) ^ (8n 2 N; P (n)) P (n+ 1))]) [8n 2 N; P (n)]:

This is called the Principle of Simple Induction (PSI). It isn't proved, it is an axiom that we assume to be

true.

Here's an an application of the PSI that will be useful for some big-Oh problems.

P (n): 2n � 2n.

I'd like to prove that 8n; P (n), using the PSI. Here's what I do:

Prove P (0): P (0) states that 20 = 1 � 2(0) = 0, which is true.

Prove 8n 2 N; P (n)) P (n+ 1):

Assume n 2 N. (n is an arbitrary natural number)

Assume P (n), that is 2n � 2n. (the antecedent)

Then n = 0 _ n > 0. (natural numbers are non-negative)

Case 1: Assume n = 0.

Then 2n+1 = 21 = 2 � 2(n+ 1) = 2.

Case 2: Assume n > 0.

Then n � 1. (since n is an integer greater than 0)

Then 2n � 2. (since n � 1, and 2n is monotone increasing)

Then 2n+1 = 2n + 2n � 2n+ 2 = 2(n+ 1). (by previous line and IH P (n))

Then 2n+1 � 2(n+ 1), which is P (n+ 1). (since it is true in both possible cases)

Then P (n)) P (n+ 1). (by )I)

Then 8n 2 N; P (n)) P (n+ 1). (by 8I)
I now conclude, by the PSI, 8n 2 N; P (n), that is 2n � 2n.

Here's a big-Oh problem where I can use P (n). Let g(n) = 2n and f(n) = n. I want to show that

g 62 O(f).
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Assume c 2 R+.

Assume B 2 N.
Let k = dlog2(c)e+ 1 +B. Let n = 2k.

Then n 2 N. (since dce; 1; 2; B 2 N, N closed under +;�)
Then n � B. (n is at least twice B)

Then 2k > c. (by choice of k, and since 2x is increasing function)

Then

g(n) = 2n = 2k � 2k (by choice of k)

� 2k � 2k (by P (2k))

= 2k � n > cn (by n = 2k and 2k > c)

= cf(n)

Then n � B ^ g(n) � cf(n). (by ^I)
Then 9n 2 N; n � B ^ g(n) � cf(n). (by 9I)

Thus 8c 2 R; 8B 2 N; 9n 2 N; n � B ^ g(n) > cf(n). (by 8I)
So, I can conclude that g 62 O(f).

What happens to induction for predicates that are true for all natural numbers after a certain point, but

untrue for the �rst few natural numbers? For example, 2n grows much more quickly than n2, but 23 is not

larger than 32. Choose n big enough, though, and it is true that:

P (n) : 2n > n2:

You can't prove this for all n: it is false for n = 2; n = 3, and n = 4. So you'll need to restrict the domain

and prove that for all natural numbers greater than 4, P (n) is true. We don't have a slick way to restrict

domains in our symbolic notation. Let's consider three ways to restrict the natural numbers to just those

greater than 4, and then use induction.

Restrict using implication: Our �rst method of restriction uses implication to restrict the domain where

we claim P (n) is true:

8n 2 N; n � 5) P (n):

The expanded predicate Q(n) : n � 5 ) P (n) now �ts our pattern for simple induction, and all we

need to do is prove:

1. Q(0) is true (it is vacuously true, since 0 � 5 is false).

2. 8n 2 N; Q(n) ) Q(n + 1). This breaks into cases. If n < 4, then Q(n) and Q(n + 1) are both

vacuously true (the antecedents of the implication are false, since n and n + 1 are not greater

than, nor equal to, 5), so there is nothing to prove. If n = 4, then Q(n) is vacuously true, but

Q(n+ 1) has a true antecedent (5 � 5), so we need to prove Q(5) directly: 25 > 52 is true, since

32 > 25. For n > 5, we can depend on the assumption of the consequent of Q(n� 1) being true

to prove Q(n):

2n = 2n�1 + 2n�1 (de�nition of 2n)

> 2(n� 1)2 (antecedent of Q(n� 1))

= 2n2 � 2n+ 2 = n2 + n(n� 2) + 2 � n2 + 2 > n2 (since n > 4 � 2)
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After all that work, it turns out that we need prove just two things:

1. P (5)

2. 8n 2 N, if n > 4, then P (n)) P (n+ 1).

This is the same as before, except now our base case is P (5) rather than P (0), and we get to use the

fact that n � 5 in our induction step (if we need it).

Restrict by translation: We can also restrict the domain by translating our predicate, so that Q(n) =

P (n+ 5), that is:

Q(n) : 2n+5 > (n+ 5)2

Now our task is to prove Q(0) is true (it is: 32 > 25), and that for all n 2 N, Q(n)) Q(n+ 1). This

is simple induction.

Restrict by set difference: A third way to restrict the domain is by set di�erence:

8n 2 N n f0; 1; 2; 3; 4g; P (n)

Again, we'll need to prove P (5), and then that 8n 2 N n f0; 1; 2; 3; 4g; P (n)) P (n+ 1).

Whichever argument you're comfortable with, notice that simple induction is basically the same: you prove

the base case (which may now be greater than 0), and you prove the induction step.

5.5 Some theorems about asymptotic notation

Here are some general results that we now have the tools to prove.

� f 2 O(f).

� (f 2 O(g) ^ g 2 O(h))) f 2 O(h).

� g 2 
(f), f 2 O(g).

� g 2 �(f), g 2 O(f) ^ g 2 
(f).

Test your intuition about Big-O by doing the \scratch work" to answer the following questions:

� Are there functions f; g such that f 2 O(g) and g 2 O(f) but f 6= g?2

� Are there functions f; g such that f 62 O(g), and g 62 O(f)?3

To show that (f 2 O(g) ^ g 2 O(h)) ) f 2 O(h), we need to �nd a constant c 2 R+ and a constant

B 2 N, that satisfy:
8n 2 N; n � B ) f(n) � ch(n):

Since we have constants that scale h to g and then g to f , it seems clear that we need their product to scale

g to f . And if we take the maximum of the two starting points, we can't go wrong. Making this precise:

Theorem 1: For any functions f; g; h : N! R
�0, we have (f 2 O(g) ^ g 2 O(h))) f 2 O(h).

Proof:

Assume f 2 O(g) ^ g 2 O(h).

5-7



So f 2 O(g).

So g 2 O(h).

So 9c 2 R+; 9B 2 N; 8n 2 N; n > B ) f(n) � cg(n). (by defn. of f 2 O(g)).

Consider cg 2 R+; Bg 2 N such that 8n 2 N; n � B ) f(n) � cgg(n).

So 9c 2 R+; 9B 2 N; 8n 2 N; n � B ) g(n) � ch(n). (by defn. of g 2 O(h)).

Consider ch 2 R+; Bh 2 N such that 8n 2 N; n � Bh ) g(n) � chh(n).

Let c = cgch. Then c 2 R+.

Let B = max(Bg; Bh). Then B 2 N.
Assume n 2 N.

Assume n � B.

Then n � Bh (de�nition of max), so g(n) � chh(n).

Then n � Bg (de�nition of max), so f(n) � cgg(n) � cgchh(n).

So f(n) � ch(n).

So n � B ) f(n) � ch(n).

Since n is an arbitrary natural number, 8n 2 N; n � B ) f(n) � ch(n).

Since c is a positive real number, and since B is a natural number,

9c 2 R+; 9B 2 N; 8n 2 N; n � B ) f(n) � ch(n).

So f 2 O(g), by de�nition.

So (f 2 O(g) ^ g 2 O(h))) f 2 O(h).

To show that g 2 
(f), f 2 O(g), it is enough to note the the constant, c, for one direction is positive, so

its reciprocal will work for the other direction.4

Theorem 2: For any functions f; g : N! R
�0, we have g 2 
(f), f 2 O(g).

Proof:

g 2 
(f)

, (de�nition)

9c 2 R+; 9B 2 N; 8n 2 N; n � B ) g(n) � cf(n)

, (by letting c0 = 1=c and B0 = B).

9c0 2 R+; 9B0 2 N; 8n 2 N; n � B0 ) f(n) � c0g(n)

, (de�nition)

f 2 O(g)

To show g 2 �(f), g 2 O(f) ^ g 2 
(f), it's really just a matter of unwrapping the de�nitions.

Theorem 3: For any functions f; g : N! R
�0, we have g 2 �(f), g 2 O(f) ^ g 2 
(f).

Proof:

g 2 �(f)

, (de�nition)

9c1 2 R+; 9c2 2 R+; 9B 2 N; 8n 2 N; n � B ) c1f(n) � g(n) � c2f(n).

, (combined inequality, and B = max(B1; B2)).

9c1 2 R+; 9B1 2 N; 8n 2 N; n � B1 ) g(n) � c1f(n) ^ 9c2 2 R+; 9B2 2 N; 8n 2 N; n � B2 ) g(n) �
c2f(n)

, (de�nition)

g 2 
(f) ^ g 2 O(f)
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Taxonomy of results

A lemma is a small result needed to prove something we really care about. A theorem is the main result

that we care about (at the moment). A corollary is an easy (or said to be easy) consequence of another

result. A conjecture is something suspected to be true, but not yet proven.

Here's an example of a conjecture whose proof has evaded the best minds for over 70 years. Maybe you'll

prove it.

De�ne f(n), for n 2 N by:

f(n) =

(
n=2; n even

3n+ 1; n odd

Let's de�ne f2(n) as f(f(n)), and de�ne fk+1(n) as f(fk(n)). Here's the conjecture:

Conjecture: 8n 2 N; 9k 2 N; fk(n) = 1.

Easy to state, but (so far) hard to prove or disprove.

Here's an example of a corollary that recycles some of the theorems we've already proven (so we don't

have to do the grubby work). To show g 2 �(f) , f 2 �(g), I re-use theorems proved above and the

commutativity of ^:

Corollary: For any functions f; g : N! R
�0, we have g 2 �(f), f 2 �(g).

Proof:

g 2 �(f)

, (by Theorem 3)

g 2 O(f) ^ g 2 
(f).

, (by Theorem 2)

g 2 O(f) ^ f 2 O(g)

, (by commutativity of ^)
f 2 O(g) ^ g 2 O(f)

, (by Theorem 2)

f 2 O(g) ^ f 2 
(g)

, (by Theorem 3)

f 2 �(g).

5.6 A very important note about asymptotic notation

Note that asymptotic notation (the Big-O, Big-
, and Big-� de�nitions) bound the asymptotic growth rates

of functions, as n approaches in�nity. Often in computer science we use this asymptotic notation to bound

functions that express the running times of algorithms, perhaps in best case or in worst case. Asymptotic

notation does not express or bound the worst case or best case running time, only the functions expressing

these values.

This distinction is subtle, but crucial to understanding both running times and asymptotic notation. If

this warning doesn't seem important to you now, come back and read this again in a few weeks, months, or

courses. You'll thank me later.
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Exercises

1. Prove or disprove the following claims:

(a) 7n3 + 11n2 + n 2 O(n3) 5

(b) n2 + 165 2 
(n4)

(c) n! 2 O(nn)

(d) n 2 O(n log2 n)

(e) 8k 2 N; k > 1) logk n 2 �(log2 n)

2. De�ne g(n) =

8<
:n

3=165; n < 165lp
6n5

m
; n � 165

. Note that 8x 2 R; x � dxe < x+ 1.

Prove that g 2 O(n2:5).

3. Let F be the set of functions from N to R�0. Prove the following theorems:

(a) For f; g 2 F , if g 2 
(f) then g2 2 
(f2).

(b) 8k 2 N; k > 1) 8d 2 R+; d logk n 2 �(log2 n).
6

Notice that (b) means that all logarithms eventually grow at the same rate (up to a multiplicative

constant), so the base doesn't matter (and can be omitted inside the asymptotic notation).

4. Let F be the set of functions from N to R�0. Prove or disprove the following claims:

(a) 8f 2 F ; 8g 2 F ; f 2 O(g)) (f + g) 2 �(g)

(b) 8f 2 F ; 8f 0 2 F ; 8g 2 F ; (f 2 O(g) ^ f 0 2 O(g))) (f + f 0) 2 O(g)

5. For each function f in the left column, choose one expression O(g) from the right column such that

f 2 O(g). Use each expression exactly once.

(i) 3 � 2n 2
(ii) 2n4+1

n3+2n�1 2
(iii) (n5 + 7)(n5 � 7) 2
(iv) n4�n log

2
n

n2+1 2
(v) n log

2
n

n�5 2
(vi) 8 + 1

n2
2

(vii) 23n+1 2
(viii) n! 2
(ix) 5 log

2
(n+1)

1+n log
2
3n 2

(x) (n� 2) log2(n
3 + 4) 2

(a) O( 1
n
)

(b) O(1)

(c) O(log2 n)

(d) O(n)

(e) O(n log2 n)

(f) O(n2)

(g) O(n10)

(h) O(2n)

(i) O(10n)

(j) O(nn)
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Chapter 5 Notes

1Better in the sense of time complexity.

2Sure, f = n2, g = 3n2 + 2.

3Sure. f and g don't need to both be monotonic, so let f(n) = n2 and

g(n) =

(
n; n even

n3; n odd

So not every pair of functions from N! R
�0 can be compared using Big-O.

4Let's try the symmetrical presentation of bi-implication.

5The claim is true.

Let c = 8. Then c 2 R+.

Let B = 12. Then B 2 N.
Assume n 2 N.

Assume n � B.

Then n3 = n� n2 � 12� n2 = 11� n2 + n2. (since n � B = 12).

So n2 � 12n. (since n � 12, multiplying both sides by n > 0).

So 12 > 1) 12n > n. (Multiplying both sides by n > 0).

So n3 � 12n2 = 11n2 + n2 � 11n2 + 12n � 11n2 + n.

So 7n3 � 7n3.

Thus cn3 = 8n3 = 7n3 + n3 � 7n3 + 11n2 + n. (adding the two inequalities).

So n � B ) 7n3 + 11n2 + n � cn3.

Since n is an arbitrary element of N, 8n 2 N, n � B ) 7n3 + 11n2 + n � cn3.

Since B is a natural number, 9B 2 N; 8n 2 N; n � B ) 7n3 + 11n2 + n � cn3.

Since c is a real positive number, 9c 2 R+; 9B 2 N; 8n 2 N; n � B ) 7n3 + 11n2 + n � cn3.

By de�nition, 7n3 + 11n2 + n 2 O(n3).

6Assume k 2 N and assume k > 1.

Assume d 2 R+.

It su�ces to argue that d logk n 2 �(log2 n).

Let c1 =
d

log
2
k
. Since k > 1, log2 k 6= 0 and so c1 2 R+.

Let c2 =
d

log
2
k
. Then c2 2 R+.

Let B = 1. Then B 2 N.
Assume n 2 N.

Assume that n � B.

Then c1 log2 n = d
log

2
k
log2 n = d log

2
n

log
2
k
= d logk n � d logk n.

Moreover, d logk n � d log
2
n

log
2
k
= d

log
2
k
log2 n = c2 log2 n.

So n � B ) c1 log2 n � d logk n � c2 log2 n.

Since n is arbitrary, 8n 2 N; n � B ) c1 log2 n � d logk n � c2 log2 n.

Thus 9B 2 N; 8n 2 N; n � B ) c1 log2 n � d logk n � c2 log2 n.

Thus 9c1 2 R+; 9c2 2 R+; 9B 2 N; 8n 2 N; n � B ) c1 log2 n � d logk n � c2 log2 n.

By de�nition, d logk n 2 �(log2 n).

Since d is an arbitrary positive real number, 8d 2 R+; d logk n 2 �(log2 n).

Hence 8k 2 N; k > 1) 8d 2 R+; d logk n 2 �(log2 n).
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