
Chapter 4

Proofs

4.1 What is a proof?

A proof is an argument that convinces someone who is logical, careful and precise. The form and detail of

a proof can depend on the audience (for example, whether our audience knows as much about general math

knowledge, and whether we're writing in English or our symbolic form), but the fundamentals are the same

whether we're talking mathematics, computer science, physical sciences, philosophy, or writing an essay in

literature class. A proof communicates what someone understands, to save others time and e�ort. If you

don't understand why something is true, don't expect to be able to prove it!

How do you go about writing a proof? Generally, there are two steps or phases to creating a proof:

1. Understanding why something is true.

This step typically requires some creativity and multiple attempts until an approach works. You should

ask yourself why you are convinced something is true, and try to express your thoughts precisely and

logically. This step is the most important (and most e�ort), and can be done in the shower or as you

lie awake in bed (the two most productive thinking spots).

Sometimes we call this finding a proof.

2. Writing up your understanding.

Be careful and precise. Every statement you write should be true in the context it's written. It

is usually helpful to use our formal symbolic form, to ensure you're careful and precise. Often you

will detect errors in your undertanding, and it's common to then go back to step 1 to re�ne our

understanding.

This is when we are writing up a proof.

Sometimes these steps can be combined, and often these steps feedback on each other. As we try to write

up our understanding, we discover a
aw, return to step 1 and re�ne our understanding, and try writing

again.

Students are often surprised that most of the work coming up with a proof is understanding why some-

thing is true. If you go back to our de�nition of what is a proof, this should be obvious: to convince someone,

we �rst need to convince ourselves and order our thoughts precisely and logically. You will see that once we

gain a good understanding, proofs nearly write themselves.

4-1

4.2 Setting up direct proof of implication

We want to make convincing arguments that a statement is true. We're allowed (forced, actually) to use

previously proven statements and axioms (things that are de�ned to be true, or assumed to be true, for the

domain). For example, if D is the set of real numbers, then we have plenty of rules about arithmetic and

inequalities. From these statements, we want to extend what we know, eventually to include the statement

we're trying to prove. Let's examine how we might go about doing this.

Consider an implication we would like to prove that is of the form:

c1: 8x 2 D; p(x)) q(x)

Many already-known-to-be-true statements are universally quanti�ed implications like c1. We'd like to �nd

among them a chain:

c2.0: 8x 2 D; p(x)) r1(x)

c2.1: 8x 2 D; r1(x)) r2(x)

...

c2.n: 8x 2 D; rn(x)) q(x)

This, in n steps, proves c1, using the transitivity of implication.

A more
exible way to summarize that the chain c2.0,: : : ,c2.n prove c1 is to cite the intermediate

implications that justify each intermediate step. Here you write the proof that p(x)) q(x) as:

Let x 2 D be such that p(x)

Then r1(x) (by c2.0)

So r2(x) (by c2.1)

...

So q(x) (by c2.n)

Thus p(x)) q(x).

This form emphasizes what each existing result adds to our understanding. And when it's obvious which

result was used, we can just avoid mentioning it (but be careful, one person's obvious is another's mystery).

Although this form seems to talk about just one particular x, by not assuming anything more than x 2 D

and p(x), it applies to every x 2 D with p(x).

4.3 Hunting the elusive direct proof

In general, the di�culty with direct proof is there are lots of known results to consider. The fact that a

result is true may not help your particular line of argument (there are many, many, many true but irrelevant

facts). In practice, to �nd a chain from p(x) to q(x), you gather two lists of results about x:

1. results that p(x) implies, and

2. results that imply q(x)

4-2

Your fervent hope is that some result appears on both lists.

p(x)

r1(x)

r2(x)

...

s2(x)

s1(x)

q(x)

Anything that one of the ri implies can be added to the �rst list. Anything that implies one of the si can

be added to the second list. What does this look like in pictures?

In Venn diagrams we can think of the ri as sets that contain p but may not be contained in q (the ones

that don't are dead ends). On the other hand, the si are contained in q but may not contain p (the ones

that don't are dead ends). We hope to �nd a patch of containment from p to q. Another way to visualize

this is by having the ri represented as a tree. In one tree we have root p, with children being the ri that p

implies, and their children being results they imply. In a second tree we have root q, with children being

the results that imply q, and their children being results that imply them. If the two trees have a common

node, we have a chain.

Are you done when you �nd a chain? No, you write it up, tidying as you go. Remove the results that

don't contribute to the �nal chain, and cite the results that take you to each intermediate link in the chain.

What do ^ and _ do?

Now your two lists have the form

8x 2 D; p(x)) (r1(x) ^ r2(x) � � � rm(x))

8x 2 D; (sk(x) _ � � � _ s1(x))) q(x)

Since p(x) implies any \and" of the ri, you can just collect them in your head until you �nd a known

result, say r1(x) ^ r2(x)) rk(x), and then add rk(x) to the list. On the other hand, if you have a result

on the �rst list of the form r1(x) ^ r2(x), you can add them separately to the list. On the second list,

use the same approach but substitute _ for ^. Any result on the �rst list can be spuriously \or'ed" with

anything: r1(x)) (r1(x)_ l(x)) is always true. On the second list, we can spuriously \and" anything, since

(s1(x) ^ l(x))) s1(x).

If we have a disjunction r1(x)_r2(x) on the �rst list, we can use it if we have a result that (r1(x)_r2(x)))

q(x), or the pair of results r1(x)) q(x), and r2(x)) q(x).

4.4 An odd example

Suppose you are asked to prove that every odd natural number has a square that is odd. You can start by

writing the outline of the proof you would like to have:

Let n 2 N, and assume n is odd.
...

So n2 is odd.

4-3

Thus 8n 2 N, n odd) n2 odd.

Start scratching away at both ends of the
... (the bit that represents the chain of results we need to �ll in).

What does it mean for n2 to be odd? Well, if there is a natural number k such that n2 = 2k + 1, then n2

is odd (by de�nition of odd numbers). Add that to the end of the list. Similarly, if n is odd, then there

is a natural number j such that n = 2j + 1 (by de�nition of odd numbers). It seem unpromising to take

the square root of 2k + 1, so why not carry out the almost-automatic squaring of 2j + 1? So now, on our

�rst list, we have that, for some natural number j, n2 = 4j2 + 2j + 1. Using some algebra (distributivity of

multiplication over addition), this means that for some natural number j, n2 = 2(2j2 + j) + 1. If we let k

from our second list be 2j2 + j, then we certainly satisfy the restriction that k be a natural number (they

are closed under multiplication and addition), and we have linked the �rst list to the second:1

How about the converse, 8n 2 N; if n2 is odd, then n is odd. If we try creating a chain, it seems a bit

as though the natural direction is wrong: somehow we'd like to go from q back to p. What equivalent of an

implication allows us to do this?2

We can set this up similarly, assuming the negation of our consequent (i.e that n is even), and trying to

chain to the negation of our antecedent (i.e. that n2 is even).

4.5 More proof structure

We continue to develop a structured format for presenting proofs in this course. The intention is to provide

you with an example of proof structure that can guide your future work either (a) writing proofs of your

own, or (b) evaluating proofs written by others. If you don't see this formalization as simply a more careful,

precise and detailed version of what we've been doing all along, then you probably need to work more on

your understanding of logical statements.

We'll be using certain explicit proof forms. The structure presented here isn't meant to restrict you to

a particular way of writing and presenting proofs, but rather to provide a framework to decide whether a

given proof has all its working parts intact. Proofs you read elsewhere might not be laid out so clearly

and completely (much to the annoyance of some readers). But once you have learned our forms you can

start detecting them hidden in less formal proofs. (This is similar to why we use symbolic statements: they

underlie the myriad English phrasings used more commonly elsewhere.)

negation (contrapositive)

Earlier we described the search for a chain of implications of the form p(x)) r1(x)) r2(x)) � � �, in order

to eventually prove 8x 2 D; p(x)) q(x). To help form promising links in this chain, consider whether

implications such as 8x 2 D; t(x)) :rk(x). You recognize this as the contrapositive of 8x 2 D; rk(x))

:t(x), so if you have rk(x) on your list, you can now add :t(x).

Symmetrically, we were looking (from the other end) for a chain of the form sn(x)) � � �) s1(x)) q(x).

It helps to consider implications of the form 8x 2 D;:sk(x)) t(x), since this is the contrapositive of

8x 2 D;:t(x)) sk(x), adding another link to the chain.

bi-implication

Even when searching for an implication, adding bi-implication links is useful. Consider

8x 2 D; rk(x), rk+1(x)

4-4

This is the conjunction of two implications, so that if rk(x)) q(x) then rk+1(x)) q(x), which means

that rk+1 is a \dead end" if and only if rk is. This helps trim down the search tree by leading to fewer dead

ends.

4.6 Proving statements about sequences

Consider the statement:

Claim 1: 9i 2 N; 8j 2 N; aj � i) j < i

and the sequence:

(A1) 0; 1; 4; 9; 16; 25; : : :

We'll use the convention that sequences are indexed by natural numbers (recall that N = f0; 1; 2; : : : g,

starting at zero just like how computers count) and ai is the element of the sequence indexed by i. Looking

at the pattern of (A1), we can write the closed form for ai.
3

We should of course try to understand Claim 1, by putting it in natural English, picturing tables and

diagrams, thinking of code that could check it, trying it on various examples, etc. To understand whether it

is true or false for (A1) we should use this understanding, including tracing it. But let's focus on the form

that a proof that Claim 1 is true could take. This may even help us understand Claim 1.

We have been justifying existentials with an example. So, our proof should start o� something like:

Let i = . Then i 2 N.
...

We leave ourselves a blank to �ll in: a speci�c value of i. We also need to make sure the i is in N. Often

it will be obvious and we will simply note it. If not, we'll actually need to put in a proof that i is in N,

between the two sentences of our outline.

Next, we need to prove something for all j in N. (Actually, we see \8j 2 N; aj � i)", so we can restrict

ourselves to certain j's in N. But for the moment let's not be so smart).

As a syntactic convenience, we prove something for all j's in N by proving it for some unknown j in N.

If we're careful to not assume anything about which j we have, our proof will handle all j's.

By the way, here's a tip for �nding a proof of a universal: �rst try proving it for a speci�c concrete

example (e.g. your favourite number). You usually get some feel for the general case from it. What's really

exciting is that sometimes you �nd that you never used the speci�c value! Then you simply erase the speci�c

value everywhere in your proof and replace it with the general variable!

Back to our proof outline:

Let i = . Then i 2 N.

Let j 2 N.
...

Notice this time we assume j is in N. I like to imagine 9 and 8 as part of a game:

� 9x 2 D: We pick x, but have to follow the rules and pick from D.

� 8x 2 D: Someone else will pick x, but we can assume they will follow the rules and pick from D. We

can't make any assumptions here about which one from D they will pick.

4-5

Notice also the indentation, similar to what we do in code. We are following the structure of Claim 1:

we are proving that all j's work for this i.

Continuing, the next level of Claim 1 is an implication. We've already seen how to deal with proving an

implication: it lets us restrict our attention to only certain j's (in this case, only the ones with aj � i). In

our proof, this lets us assume aj � i.

We need only now to check that j < i (this is something left to prove).

Let i = . Then i 2 N.

Let j 2 N.

Suppose aj � i.
...

Thus j < i.

We leave ourselves room (the
...) for a proof of j < i. Once we �ll in a value of i, the proof of j < i may

use three things: that value of i, j 2 N, and aj � i.

After a little thought, we decide that setting i = 2 is a good idea, since then aj � i is only true for j = 0

and j = 1, and these are smaller than 2. Now let's �ll in the rest of our proof, for (A1):

Let i = 2. Then i 2 N.

Let j 2 N.

Suppose aj � i.

Then aj � 2.

Looking at the sequence, this means j = 0 or j = 1.

So j < 2.

Thus j < i.

Thus aj � i) j < i (since assuming aj � i leads to the conclusion j < i).

Since j is an arbitrary element of N, 8j 2 N; aj � i) j < i.

Since i 2 N, 9i 2 N; 8j 2 N; aj � i) j < i .

4.7 Disproving statements

Consider now the statement:

Claim 2: 9i 2 N; 8j 2 N; j > i) aj = ai

and the sequence:

(A2) 0; 0; 1; 1; 2; 2; 3; 3; 4; 4; 5; 5; 6; :::

Let's disprove it. Is disproof a whole new topic? Thankfully no. We simply prove the negation:

Claim 20: 8i 2 N; 9j 2 N; j > i ^ aj 6= ai

Following the same strategy as we used before, we get as far as:

Let i 2 N.

Let j = . Then j 2 N.
...

Hence j > i ^ aj 6= ai.

Since j 2 N, 9j 2 N; j > i ^ aj 6= ai.

4-6

Since i is an arbitrary element of N, 8i 2 N; 9j 2 N; j > i ^ aj 6= ai.

So we don't pick i. But we get to pick j. And we are allowed to make j depend on i.

Using our game analogy: we get to pick j after someone else picks i. Unfortunately, while writing up the

proof we can't wait for someone to pick j. So how does it help us? We get to describe a general strategy

for how we would pick a particular j if we knew which particular i. In other words, j can be described as

function of i.

In programming terms, i is in scope when we pick j: it has been declared and can be seen from where

we declare j. Notice that j is not in scope when we declare i: so when we picked i for Claim 1, we weren't

allowed to use j. If we write a Java program that uses a variable before it's declared and initialized, the

program doesn't even compile. This is a major error. If you write a proof that does this, you will lose a lot

of marks (and it will probably be wrong).

Now we are left with proving j > i ^ aj 6= ai (notice we wrote this at the bottom... we must have been

thinking ahead). What form does the proof of a conjunction take?4

Let i 2 N.

Let j = . Then j 2 N.
...

So j > i.
...

So aj 6= ai.

Hence j > i ^ aj 6= ai.

Since j 2 N, 9j 2 N; j > i ^ aj 6= ai.

Since i is an arbitrary element of N, 8i 2 N; 9j 2 N; j > i ^ aj 6= ai.

To �nish this o�, we need to choose a value for j. If we choose wisely, the rest of the proof falls into

place.5 What elementary property of arithmetic will we require?6

4.8 An odd example revisited

Earlier we considered the implication \8n 2 N; n odd) n2 odd," and its converse. We developed a direct

proof of the implication, and found that the same template could not be applied to prove the converse (even

though the converse is true). This asymmetry shows that the search through the implication trees from p

to q does not necessarily follow the same path as from q to p, even when both paths exist and p, q.

However, it seems aesthetically disturbing that when p, q we don't �nd a doubly-linked list of implica-

tions connecting them. One of your classmates came up with an approach that allows this symmetry (I've

modi�ed it slightly)

Claim: 8n 2 N, n odd , n2 odd.

Proof:

Let n 2 N.

Then

n2 is odd

is equivalent to

9k 2 N such that n2 = 2k + 1 (de�nition of odd natural numbers);

is equivalent to

n2 � 1 = 2k for some integer k;

4-7

is equivalent to

n2 � 1 is even (de�nition of even integer);

is equivalent to

(n� 1)(n+ 1) is even (complete the square);

is equivalent to

(n � 1) is even or (n + 1) is even () if prime number 2 divides a product, it divides some

factor)

((de�nition of even);

is equivalent to

(n� 1) is even or (n+ 1)� 2 = (n� 1) is even (integer i is even if and only if i� 2 is even);

is equivalent to

(n� 1) is even (idempotent law);

is equivalent to

n� 1 = 2j for some integer j (de�nition of even);

is equivalent to

n = 2j + 1 for some integer j;

is equivalent to

n is odd.

Thus n2 is odd , n is odd.

Since n is an arbitrary natural number, 8n 2 N; n2 odd , n odd.

4.9 Direct proof structure of the universal

Our general form of a direct proof of the implication 8x 2 D; p(x)) q(x) is:

Let x 2 D. (introduce variable x with scope indicated by indentation).

Suppose p(x). (indentation indicates where p(x) is assumed true)
... (�ll in the proof of q(x))

q(x)

Hence p(x)) q(x).

Since x is an arbitrary element of D, 8x 2 D; p(x)) q(x).

Here's a concrete example. Let R be the set of real numbers. Prove:

8x 2 R; x > 0) 1=(x+ 2) < 3

Structure the proof as above:

Let x 2 R.

Suppose x > 0.
... (prove 1=(x+ 2) < 3)

Therefore 1=(x+ 2) < 3.

Hence x > 0) 1=(x+ 2) < 3.

Since x is an arbitrary element of R, 8x 2 R; x > 0) 1=(x+ 2) < 3.

Of course, you should unwrap the sub-proof that 1=(x+ 2) < 3:

Let x 2 R.

Suppose x > 0.

4-8

so x+ 2 > 2 (since x > 0)

so 1=(x+ 2) < 1=2 (since x+ 2 > 2 and 2 > 0)

so 1=(x+ 2) < 3 (since 1=(x+ 2) < 1=2 and 1=2 < 3)

Therefore 1=(x+ 2) < 3.

Hence x > 0) 1=(x+ 2) < 3.

Since x is an arbitrary element of R, 8x 2 R; x > 0) 1=(x+ 2) < 3.

Is the converse true (what is the converse)?7

When no implication is stated, then we don't assume (suppose) anything about x other than membership

in the domain. For example, 8x 2 D; p(x) has this proof structure:

Let x 2 D.
... (prove q(x))

Hence q(x).

Since x is an arbitrary element of D, 8x 2 D; q(x).

4.10 Direct proof structure of the existential

Consider the example 9x 2 R; x3 +2x2 +3x+4 = 2. Since this is the existential, we need only �nd a single

example to show that the statement is true. We structure the proof as follows:

Let x = �1.

Then x 2 R.

Also, x3 + 2x2 + 3x+ 4 = (�1)3 + 2(�1)2 + 3(�1) + 4 = �1 + 2� 3 + 4 = 2.

Since x 2 R, 9x 2 R; x3 + 2x2 + 3x+ 4 = 2.

The general form for a direct proof of 9x 2 D; p(x) is:

Let x = [pick a speci�c value, unlike the universal]

Then x 2 D. [this may be obvious from choice of x]
... (prove p(x))

Hence p(x).

Since x 2 D, 9x 2 D; p(x).

4.11 Multiple quantifiers

Multiple quanti�ers cause multiple nesting. Consider 8x 2 D;9y 2 D; p(x; y). The corresponding proof

structure is:

Let x 2 D.

Let yx = (select something that helps prove p(x; y))
...

Then yx 2 D.
...

Also p(x; yx).

Since yx 2 D, 9y; p(x; y).

Since x is an arbitrary element of D, 8x 2 D;9y 2 D; p(x; y).

4-9

Here's a concrete example. Suppose we have a mystery function f and the following statement (I have

added parentheses to indicate the conventional parsing):

8e 2 R; e > 0) (9d 2 R; d > 0 ^ (8x 2 R; 0 < jx� aj < d) (jf(x)� lj < e)))

If we want to prove this true, structure the proof as follows:8

If we want to prove the statement false, we �rst negate it, and then use one of our proof formats (I use

the equivalences :(p) q), (p ^ :q) and :(p ^ q), (p) :q)):

9e 2 R; e > 0 ^ 8d 2 R; d > 0) 9x 2 R; 0 < jx� aj < d ^ jf(x)� lj � e

Of course, this negation involved several applications of rules we already know, and now its proof may

be written step-by-step. Notice that, in the middle of our proof, we had a \^" to prove.

Proving ^

The ^ subproof has the following form:

So, de > 0.

Let x 2 R.
...

Since x is an arbitrary real number, 8x 2 R; 0 < jx� aj < d) jf(x)� lj < e.

So de > 0 ^ 8x 2 R; 0 < jx� aj < d) jf(x)� lj < e...

We rolled the conclusion into the statement beginning \Therefore, 9d..." The general form to prove A ^ B

is:

...

Then A.
...

Then B.

Thus A ^B.

Don't let variables introduced while proving A \bleed" over into the proof of B (remember the scope rules!).

If we had to open a new indentation level to prove A, once we close that level we can't use anything mentioned

inside there again (and, particularly, we can't use it to help prove B).

Proving ,

This also tells us how to prove a bi-implication, since bi-implication is just a conjunction of implications.

To prove A, B, start from its de�nition:

...

Then (A) B) ^ (B) A).

Thus A, B.

4-10

4.12 Non-boolean function example

Earlier we discussed how non-boolean functions cannot take the place of predicates (which are analogous to

boolean functions) in a proof. How should they be used? De�ne bxc : R! R by:

bxc is the largest integer � x.

Now we can form the statement:

Claim 3: 8x 2 R; bxc < x+ 1

It makes sense to apply bxc to elements of our domain, or variables that we have introduced, and to evaluate

it in predicates such as \<" but bxc itself is not a variable, nor a sentence, nor a predicate. We can't (sensibly)

say 8bxc 2 R or 8x 2 R; bxc _ bx+1c. The structure of Claim 3 is a direct proof of a universally-quanti�ed

predicate:9

Since x is an arbitrary element of R, 8x 2 R; bxc < x+ 1.

Of course, we need to �ll in the \meat" of the proof.10

In some cases you need to break down a statement such as \y is the largest integer � x":

y 2 Z ^ y � x ^ (8z 2 Z; z � x) z � y)

We didn't need the entire de�nition for our proof above, and in practice we don't always have to return

to de�nitions when dealing with functions. For example, we may have an existing result, such as:

8x 2 R; bxc > x� 1

4.13 Substituting known results

Every proof would become unmanageably long if we had to include \inline" all the results that it depended

on. We inevitably refer to standard results that are either universally known (among math wonks) or can

easily be looked up. Sometimes we need to prove a small technical result in order to prove something larger.

You may view the smaller result as a helper method (usually returning boolean results) that you use to

build a larger method (your bigger proof). To make things modular, you should be able to \call" or refer to

the smaller result. An example occurs if we want to re-cycle

Theorem 1: 8x 2 R; x > 0) 1=(x+ 2) < 3.

We want to use this in proving 8y 2 R; y 6= 0) 1=(y2 + 2) < 3. The template to �ll in is11

Now we have to �ll in the
... part.12

4.14 Proof by cases

To prove A) B, it can help to treat some A's di�erently than others. For example, to prove that for all

integers x2+ x is even, you might proceed by noting that x2+ x is equivalent to x(x+1). At this point our

reasoning has to branch: at least one of the factors x or x + 1 is even (for integer x), but we can't assume

that a particular factor is even for every integer x. So we use proof by cases.13

A simple two-case _ can be expressed in \if... else/otherwise..." style

4-11

If x is even, then x(x+ 1) is even.

Otherwise, x is odd, so x+ 1 is even, and thus x(x+ 1) is even.

This is a special case of an \OR" clause being the antecedent of an implication. If you want to prove

(A1 _ A2 _ � � �An)) B, (this could happen if, along the way to proving A) B you use the fact that

A) (A1 _ � � �An). Now you need to prove A1) B, A2) B; � � � ; An) B. Notice that in setting this up

it is not necessary that the Ai be disjoint (mutually exclusive), just that they cover A (think of A being a

subset of the union of the Ai). One way to generate the cases is to break up the domain D = D1 [� � � [Dn,

so Ai = Di ^ A. Now you have an equivalence, A , A1 _ � � � _ An. A very common case occurs when the

domain partitions into two parts, D = D1 [:D1, so you can rewrite A as (A ^D1) _ (A ^ :D1).

Here's the general form of proving something by cases:

A _B

Case 1: Assume A
...

Then C

Case 2: Assume B
...

Then C

Since A _B and in both (all) cases we concluded C, then C.

Remember that we need one case for each disjunct, so if we knew A1 _ � � � _ An, we'd need n cases.

When you're reading (or writing) proofs, often the word \assume" is omitted when de�ning the case.

Though it might say \Case x < k", remember that x < k is an assumption, thus opens a new indentation

(scope) level.

law of the excluded middle

Often we want to proceed by cases, but don't have a disjunction handy to use. We can always introduce

one using the Law of the Excluded Middle. This law of logic states that a formula is either true or

false|there's nothing between (or \in the middle"). Thus, for any formula P , the following is sure to be

true:

P _ :P

In your proof, you can then split into two cases depending on whether P is true or false. Just be sure to

negate P correctly!

example proof using cases

Suppose we wanted to prove the following statement: if n is an integer then n2 + n is even.

Let's formalize what we mean by the term \integer n is even":

For n 2 Z, let even(n) mean 9k 2 Z; n = 2k.

Let's formalize what we're proving:

Claim 4: 8n 2 Z; 9k 2 Z; n2 + n = 2k.

Noticing that n2 + n = n(n+ 1), we consider whether n is odd or even. We know that every integer is

either odd or even, so let's state this formally:

4-12

(*) 8n 2 Z; (9k 2 Z; n = 2k + 1) _ (9k 2 Z; n = 2k).

Now to the proof of our claim. In it we will know that an existential is true, and we will want to use

that knowledge. We may ask the existential to \return" an example element, which we get to name and use

(we name it k0 so that it won't con
ict with any other elements we're talking about).

Let n 2 Z.

By (*), 8n 2 Z; (9k 2 Z; n = 2k + 1) _ (9k 2 Z; n = 2k).

So (9k 2 Z; n = 2k + 1) _ (9k 2 Z; n = 2k) (since n 2 Z).

Case 1: 9k 2 Z; n = 2k + 1

Let k0 2 Z be such that n = 2k0 + 1.

Then n2 + n = n(n+ 1) = (2k0 + 1)(2k0 + 2) = 2[(2k0 + 1)(k0 + 1)]

Let k = (2k0 + 1)(k0 + 1). Then k 2 Z.

And n2 + n = 2k, from above.

Thus 9k 2 Z; n2 + n = 2k.

Case 2: 9k 2 Z; n = 2k).

Let k0 2 Z be such that n = 2k0.

Then n2 + n = n(n+ 1) = 2k0(2k0 + 1) = 2[k0(2k0 + 1)]

Let k = k0(2k0 + 1). Then k 2 Z.

And n2 + n = 2k, from above.

Thus 9k 2 Z; n2 + n = 2k.

So 9k 2 Z; n2 + n = 2k, since we concluded it in each case, and one of these cases must occur.

Since n is an arbitrary element of Z, 8n 2 Z; 9k 2 Z; n2 + n = 2k.

linking proof to programming

Let's relate this to programming. We can think of a predicate \even(n)" as being a Java method that returns

a Boolean value:

/* Return whether n is even. */

static boolean isEven(int n)

We can also imagine an example generator for even numbers:

/* Requires: n even.

Return k such that n = 2k. */

static int evenWitness(int n)

We'll leave it as an exercise to de�ne isOdd and oddWitness.

Now we can imagine (S1) as saying we can implement the following method, and the proof as the

implementation and internal comments.

/* Return k such that n^2 + n = 2k */

static int S1(int n) {

if (odd(n)) {

int k0 = oddWitness(n);

// n = 2k0 + 1

// so n^2 + n = ... = 2[(2k0 + 1)(k0 + 1)

int k = (2 * k0 + 1) * (k0 + 1);

return k;

4-13

} else { // even(n)

int k0 = evenWitness(n);

// ...

int k = k0 * (2 * k0 + 1);

return k;

}

}

In some (very strong) sense, programming and proving are really the same thing. Improving your skills

in one area will improve your skills in the other. Sometimes it's easier to think in terms of programming,

and sometimes it's easier to think in terms of deriving proofs.

Consider the following CSC 108-like example: prove that whomever goes �rst in a game of tic-tac-toe

should not lose, assuming correct play. If you can write a program that never loses, you should be able to

write a mathematical proof of this fact.

4.15 Proving _ using cases

Let's prove that the square of an integer is a triple or one more than a triple.

Claim 5: 8n 2 N; (9k 2 N; n2 = 3k) _ (9k 2 N; n2 = 3k + 1).

This will involve proving a disjunction. This can be done by cases. If we know P _ Q, we can prove

R _ S as follows:

P _Q

Case 1: Assume P
...

Then R

Case 2: Assume Q
...

Then S

Thus R _ S14

If we have already have some P _Q we can use, then those are the obvious cases to consider, though we

still have to decide between the two ways of pairing them up with R and S. In general though, picking P

and Q that work depends completely on context. When constructing proof structures, make up a name for

P , and use :P for Q: the Law of the Excluded Middle ensures this is true, and it is the simplest yet still

general structure.

This of course generalizes to more than two cases: if we know P1 _ P2 _ � � � _ Pn, and we want to prove

Q1 _ � � � _Qm, then we can do cases for each Pi, in each case proving a Qj . We don't have to prove all the

Qj , and we can prove some of them in more than one case.

To prove our claim, we want to use part of the Remainder Theorem:

(*) 8n 2 N; (9k 2 N; n = 3k _ n = 3k + 1 _ n = 3k + 2)

We now proceed with our proof of the claim by cases. One case is left for you to do as an exercise.

Let n 2 N.

By (*), 9k 2 N; n = 3k _ n = 3k + 1 _ n = 3k + 2.

So let k0 2 N be such that n = 3k0 _ n = 3k + 0 + 1 _ n = 3k0 + 2.

Case 1: n = 3k0.

4-14

Let k = 3k0
2. Then k 2 N.

And n2 = (3k0)
2 = 3(3k0

2) = 3k.

Thus 9k 2 N; n2 = 3k.

Case 2: n = 3k0 + 1.

Let k = 3k0
2 + 2k0. Then k 2 N.

And n2 = (3k0 + 1)2 = 9k0
2 + 6k0 + 1 = 3(3k0

2 + 2k0) + 1 = 3k + 1.

Thus 9k 2 N; n2 = 3k + 1.

Case 3: n = 3k0 + 2.

Exercise.

Thus, by cases, (9k 2 N; n2 = 3k) _ (9k 2 N; n2 = 3k + 1).

Since n is an arbitrary element in N, 8n 2 N; (9k 2 N; n2 = 3k) _ (9k 2 N; n2 = 3k + 1).

4.16 Indirect proof

Since p) q is equivalent to its contrapositive, :q) :p, proving the latter proves the former. This is called

an \indirect proof." The outline format of an indirect proof of 8x 2 D; p(x)) q(x) is15.

As an exercise, consider: 8x 2 Z; if x2 is odd, then x is odd.

4.17 Building formulae and taking formulae apart

So far we've been concentrating on proving more and more complicated sentences. This makes sense, since

the sentence we've proving determines the structure our proof will take. For each of the logical connectives

and quanti�ers, we've seen structures that allow us to conclude big statements from smaller ones. The

inference rules that allow us to do this are collectively called introduction rules, since they allow us to

introduce new sentences of a particular type.

But rarely do we prove things directly from predicates. We often have to use known theorems and results

or separately proven lemmas to reduce the length of our proofs to a managable size (can you imagine always

having to prove 2 + 2 = 4 from primative sets each time you use this fact?). Good theorems are useful in

a number of settings, and typically use a number of connectives and quanti�ers. Knowing how to break

complex sentences down is equally important as knowing how to build complex sentences up.

Just as there are inference rules allowing us to introduce new, complex sentences, there are inference rules

allowing us to break sentences down in a formal, precise and valid way. These rules are collectively called

elimination rules, since they allow us to eliminate connectives and quanti�ers we don't want anymore.

Most rules should be fairly straight-forward and should make sense to you at this point; if not, you should

review your manipulation rules.

Double negation elimination

We can't do much to remove one negation (unless we can move it further inside), but we know how to get

rid of two negations. Indeed, this was a manipulation rule from the previous chapter, but we can also treat

it as a reasoning rule: if we know ::A is true, we know A is true.

Conjunction elimination

Nearly as easy as negation, how can we break up a conjunction? If we know A^B, what can we conclude?16

4-15

Existential elimination

We might know that 9x 2 D;B, where B likely mentions x somewhere inside. In other words, we know B

is true for some element in D, but we don't know which one. How can we proceed? We'd probably like to

say something about that element in D that B is true for, but how do we know which element it is?

We don't really need to know which element B is true for, only that it exists. It exists, so if we look for

it, we're sure to �nd it (actually �nding it might be hard, so that's a job for the engineers|we have a proof

to �nish!). We can convert an existential statement about some object into a statement about a speci�c

object as follows:

9x 2 D; B

Consider a 2 D such that Bx a.
...

In the
..., we can use a and B (with each reference to x replaced by a) and even 9x 2 D;B however we please.

We do not have to open a new scope, but there are some important rules we need to follow:

� a must be a brand new object/variable name that cannot have been used before! Just because we

know such an object exists does not mean it's the same as anything we've mentioned before (you

would need to prove that).

� All references to x (that are bound to this existential) must be replaced by references to a (that's what

Bx a means: replace x with a inside B).

Here's an example. Suppose we need to prove that the square of an even natural number is even. We

know a natural number n is even if 9k 2 N; n = 2k. We expand this fact to complete our proof:

Assume n is even.

So 9k 2 N; n = 2k by de�nition.

Consider k 2 N such that n = 2k.

Then n2 = 2k � n (multiply both sides by n).

Let k0 = kn.

Then k0 2 N (closure of natural numbers).

So n2 = 2k0.

Since k0 2 N, 9k 2 N; n2 = 2k.

Thus n2 is even.

Thus n is even implies n2 is even.

Disjunction elimination

A _ B itself cannot be split, as we don't know which part of the disjunction is true. However, if we also

know :A, we can conclude B must be true. Analogously, with :B we can conclude A.

Another good way to deal with a disjunction is proof by cases, which we discussed above.

Implication elimination

Suppose we know A) B. If we are able to show A is true, then we could immediately conclude B. This is

perhaps the most basic reasoning structure, and has a fancy latin name: modus ponens (meaning \mode

that a�rms"). This form is the basis to deductive argument (you can imagine Sherlock Holmes using modus

ponens to reveal the criminal).

4-16

On the other hand, if we knew :B, we could still get something from A) B: we'd be able to conclude

:A. This form of reasoning is using the contrapositive and is known as modus tollens (Latin for \mode

that denies").

We can also appeal to the manipulation rules to rewrite A) B as a disjunction, :A _ B, and expand

this formula as desired.

Bi-implication elimination

To take apart a sentence like A, B, we simply exploit its equivalence to (A) B) ^ (B) A) and expand

it appropriately.

If we also know A, we can skip some work and directly conclude that B must be true (using the implication

A) B hidden in the bi-implication). Likewise, if we also knew :A, we could conclude :B. Each of these

properties are easily proven using preceding rules.

Universal elimination

Suppose you know that 8x 2 D;B(x). How can we use this fact to help prove other things? This sentence

says B(x) is true for all members of domain D. So we could use this as meaning a huge disjunction over all

the elements of D = fd1; d2; d3; : : : g:

B(d1) ^B(d2) ^B(d3) ^ : : :

From this expansion (even if we can't write it17) it's clear that if a 2 D, we can conclude that B(a) is true.

This is sometimes called universal instantiation, or universal specialization, since we're allowed to conclude

a specialized statement from our general statement. Intuitively, what holds for everything must hold for any

speci�c thing. Typically, a will have been mentioned already, and you'll want to express that a has some

speci�c property (in this case, B(a)).

4.18 Proof by contradiction

Recall that every statement you write in a proof must be true in their context (the set of assumptions you've

made to get to the present scope). And remember that only one of a statement and its negation should be

true in the same context. Sometimes, however, we discover that both a statement and its negation are true

at the same time! Error! Error?

What's happened? Do we have a
aw in our proof? Probably not. All this means is that we've wandered

into a non-existent world. When we have a statement that's both true and false at the same time, we've

discovered a contradiction. This indicates that the assumptions we've made are inconsistent, and thus

could not have occurred. This is a good thing, because we've proven that this case cannot have occurred,

so we don't need to deal with it.

When we detect that both A and :A are true at the same time, we're allowed to derive \contradiction,"

and we're allowed to conclude that the last assumption we've made is incorrect. In other words, we're

allowed to introduce a negation of a formula.

Consider the following statement about sequences of natural numbers:

8i 2 N; (i > 0 ^ ai < ai�1)) ai is even

and the sequence:

(A3) an =

(
n+ 1 if n even

n� 1 if n odd

4-17

Our proof proceeds as follows:

Let i 2 N.

Assume i > 0 ^ ai < ai�1.

So i > 0 (by ^E).

Since i� 1 � 0, i� 1 2 N (by math, N de�nition).

So ai < ai�1 (by ^E).
...

Thus ai is even.

Thus (i > 0 ^ ai < ai�1)) ai is even (by)I).

Since i is an arbitrary element of N, 8i 2 N; (i > 0 ^ ai < ai�1)) ai is even (by 8I).

We get stuck at this point (trying to �ll in the
...), so we observe that i is either odd or even and try to

proceed by cases:

i is odd _ i is even (by law of excluded middle).

Case 1: [Assume] i is odd.

Then ai = i� 1 (by (A3)).

Thus ai is even.

Case 2: [Assume] i is even.

Then ai = i+ 1 (by (A3)).

Then ai�1 = (i� 1)� 1 = i� 2 (by (A3)).

So :(ai < ai�1).

Thus contradiction.

We discovered a contradiction in case 2, so we know that case 2 could not have occurred. We rewrite this

argument into a proof by contradiction (instead of a proof by cases):

Assume :(i is odd). Then i is even.

Then ai = i+ 1 (by (A3)).

Then ai�1 = (i� 1)� 1 = i� 2 (by (A3)).

So :(ai < ai�1).

Thus contradiction.

Then :(:(i is odd)) (by :I).

So i is odd (by :E).

Then ai = i� 1 (by (A3)).

Thus ai is even.

Interestingly, you can prove any statement at all from a contradiction.18 So everything is true and

everything is false in dreamworlds.

4.19 Summary of inference rules

There are several basic and derived rules we're allowed to use in our proofs. Many of them are summarized

here. For each rule, if you know (have already shown) everything that is above the line, you are allowed to

conclude anything that's below the line.

4-18

Introduction rules

)I implication introduction

(direct proof for implication)

Assume A
...

B

A) B

^I conjunction introduction

A

B

A ^B

_I disjunction introduction

A

A _B

B _ A

,I equivalence/bi-implication introduction

...

A) B
...

B) A

(A) B) ^ (B) A)

A, B

:I negation introduction

Assume A
...

contradiction

:A

8I universal introduction

Let a 2 D be arbitrary.
...

P (a)

8x 2 D;P (x)

9I existential introduction

P (a)

a 2 D

9x 2 D;P (x)

Other rules

ContraI contradiction introduction

A

:A

contradiction

Elimination rules

:E negation elimination

::A

A

^E conjunction elimination

A ^B

A

B

_E disjunction elimination

A _B

:A

B

)E implication elimination (Modus Ponens)

A) B

A

B

,E equivalence/bi-implication elimination

A, B

A

B

8E universal elimination

8x 2 D;P (x)

a 2 D

P (a)

9E existential elimination

9x 2 D;P (x)

Consider a 2 D such that P (a)
...

Other rules

RE rewriting/repetition

A

A

excluded middle

A _ :A

MT reverse implication elimination

(Modus Tollens)

A) B

:B

:A

4-19

Chapter 4 Notes

1Let n 2 N such that n is odd.

Then, for some j 2 N, n = 2j + 1 (de�nition of odd number).

Let j 2 N be such that n = 2j + 1.

So n2 = 4j2 + 4j + 1 (de�nition of squaring a number)

So n2 = 2(2j2 + j) + 1 (distributive law)

So there exists a natural number k = 2j2 + j such that n2 = 2k + 1. (N is closed under addition

and multiplication)

So n2 is odd.

Thus 8n 2 N, n odd) n2 odd.

2The contrapositive.

3We see that ai = i2.

4We need to prove both pieces of a conjunction.

5Try j = i+ 2.

68a 2 N; 8b 2 N; b > 0) a+ b > a.

78x 2 R; 1=(x+ 2) < 3) x > 0. False, for example let x = �4 (Alex's suggestion), then 1=(�4 + 2) =

�1=2 < 3 but �4 6> 0. Indeed, every x < �2 is a counter-example.

8Let e 2 R.

Assume e > 0.

Let de = (something helpful, probably depending on e)

Then de 2 R.

Also de > 0.

Let x 2 R.

Assume 0 < jx� aj < de.
...

So jf(x)� lj < e.

Hence 0 < jx� aj < de) (jf(x)� lj < e).

Since x is an arbitrary element of R, 8x 2 R; 0 < jx� aj < de) (jf(x)� lj < e).

Thus 9d 2 R; d > 0 ^ (8x 2 R; 0 < jx� aj < d) (jf(x)� lj < e)).

Then, e > 0) (9d 2 R; d > 0 ^ (8x 2 R; 0 < jx� aj < d) (jf(x)� lj < e))).

Since e is an arbitrary element of R,

8e 2 R; e > 0) (9d 2 R; d > 0 ^ (8x 2 R; 0 < jx� aj < d) (jf(x)� lj < e))):

9 Let x 2 R.
...

Then bxc < x+ 1.

Since x is an arbitrary element of R, 8x 2 R; bxc < x+ 1.

10 Let x 2 R.

Let y = bxc

4-20

Then y is the largest integer � x (de�nition of
oor)

So y � x and x < x+ 1 (adding 1 to both sides of an inequality)

So y < x+ 1

So bxc < x+ 1

Since x was an arbitrary element of R, 8x 2 R; bxc < x+ 1.

11 Let y 2 R.

Assume y 6= 0.
...

Hence 1=(y2 + 2) < 3.

Thus y 6= 0) 1=(y2 + 2) < 3.

Since y is an arbitrary element of R, 8y 2 R; y 6= 0) 1=(y2 + 2) < 3.

12 Let y 2 R.

Assume y 6= 0.

Then y2 2 R and y2 � 0 (true for all elements of R).

So y2 > 0, since y2 6= 0 and y2 � 0 (only real number whose square is 0 is 0).

So, by Theorem 1, 1=(y2 + 2) < 3.

Hence y 6= 0) 1=(y2 + 2) < 3.

Since y is an arbitrary element of R, 8y 2 R; y 6= 0) 1=(y2 + 2) < 3.

13 Let x 2 Z.

Either x is even or x is odd (by law of excluded middle).

We know that (at least) one of these disjuncts must hold, so we break into two cases.

Case 1: [Assume] x is even.

Then x(x+ 1) is even.

Case 2: [Assume] x is odd.

Then x+ 1 is even.

So x(x+ 1) is even.

Since x is either even or odd, x(x+ 1) is even in all cases.

Since x is an arbitrary element of Z, 8x 2 Z; x(x+ 1) is even.

14Instead of concluding R in once case and S in the other, we are actually concluding R_S in both cases,

and then we bring R _ S outside the cases because we concluded it in each case, and one of the cases must

hold. (Remember that once we conclude that R is true, we can immediately conclude that R _ S is true.)

So this is exactly the same structure we've seen before.

15 Let x 2 D.

Suppose :q(x).
...

Then :p(x).

Then p(x)) q(x).

Since x is an arbitrary element of D, 8x 2 D; p(x)) q(x).

16We know A is true and that B is true.

17All our sentences are �nite in length, so if our domain D is in�nite (like the natural numbers or real

numbers), we can't actually write this expansion down. That's the reason why we need a universal quanti�er

in our logic system.

4-21

18Once we have a contradiction, to prove :P , we assume P , derive contradiction via rewriting, and thus

conclude :P . The method to prove P is similar.

4-22

