University of Toronto, St. George Campus Department of Computer Science

Quiz #4 Sample Solutions

We want to prove the following statement:

 $3n\sqrt{4+3n} \in O(n^2+2n)$

We construct the standard proof structure and fill it in, choosing values for c and B when needed.

Let c = 6. Then $c \in \mathbb{R}^+$. Let B = 2. Then $B \in \mathbb{N}$. Let $n \in \mathbb{N}$. Assume $n \ge B$. Then $\sqrt{4+3n} \le \sqrt{4+3n^2} \le \sqrt{n^2+3n^2} = 2n$ (since $n \ge 2$). So $3n\sqrt{4+3n} \le 3n \cdot 2n = 6n^2$. Then $c(n^2 + 2n) \ge c(n^2) = 6n^2$ (dropping a positive term). Thus $3n\sqrt{4+3n} \le 6n^2 \le c(n^2 + 2n)$ (comparing inequalities). So $n \ge B \Rightarrow 3n\sqrt{4+3n} \le c(n^2 + 2n)$. Since n is an arbitrary element of \mathbb{N} , $\forall n \in \mathbb{N}$, $n \ge B \Rightarrow 3n\sqrt{4+3n} \le c(n^2 + 2n)$. Since B is a natural number, $\exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge B \Rightarrow 3n\sqrt{4+3n} \le c(n^2 + 2n)$. Since c is a real positive number, $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge B \Rightarrow 3n\sqrt{4+3n} \le c(n^2 + 2n)$. By definition, $3n\sqrt{4+3n} \le O(n^2 + 2n)$.

Note that these are not the only values for c and B that work. Anything larger would work equally well in this proof, and some smaller values might work (coupled with the right argument).