PROOF STRUCTURES (WITH SOME COMMENTS ABOUT FILLING THEM IN)

GARY BAUMGARTNER

TO PROVE/CONCLUDE

 $A \rightarrow B$ Suppose A.

:
Then B.
Thus $A \rightarrow B$.

If A is not just a predicate, expand it with the rules in WHEN ASSUMED/KNOWN (the section below). Put the expansion immediately after the "Suppose A".

If B is not just a predicate, expand it with the rules in this section; put the expansion immediately before the "Then B".

In general, all the rules require this: decide what they require you to prove and what they let you assume, then proceed recursively.

If we were *filling in the proof* (not just giving the structure), we would have the "indirect" *option* of proving the contrapositive instead.

Suppose $\neg B$. \vdots $Then \neg A$. $Then \neg B \rightarrow \neg A$. $Thus A \rightarrow \neg B$. $A \land B$ \vdots Then A. \vdots Then B. $Thus A \land B$. $A \leftrightarrow B$ We start with its definition: \vdots $Then (A \rightarrow B) \land (B \rightarrow A)$. $Thus A \leftrightarrow B$.

Date: Wed Mar 2 18:52:48 EST 2005.

1

We can begin the recursive expansion: the : indicate a proof of $(A \to B) \land (B \to A)$, which is of the form $() \wedge ()$, so

```
Then A \to B.
Then B \to A.
Thus A \leftrightarrow B.
```

This contains two implications to prove, so

```
Suppose A
               Then B.
            Then A \to B.
            Suppose B.
               Then A.
            Then B \to A.
            Thus A \leftrightarrow B.
\forall x \in D, B
```

Let $x \in D$. Then B.

Thus, since $x \in D$ is arbitrary and $B: \forall x \in D, B$.

The form $\forall x \in D, A \to B$ is very common, and when you expand it using the rule for \forall and then the rule for \rightarrow , you may put the "Suppose A" at the same indentation level as "Let $x \in D$ " if you like.

$\exists x \in D, B$

```
Let x = \_\_\_.
   Then x \in D.
   Then B.
Thus, since x \in D and B: \exists x \in D, B.
```

$A \vee B$

Case: $_C_$ Then A. Case: $_\neg C_$ Then B.

In each case, A or B.

Thus, since (at least) one of the cases is true: $A \vee B$.

If we were filling in the proof we would need to choose C. We would have the option of more than one case C_1, C_2, \ldots, C_n as long as it is clear (or we also prove) that $C_1 \vee C_2 \vee \cdots \vee C_n$. We can also conclude just $A \vee B$ in one or both of the cases, but typically the point of choosing C is that it is a case where we can determine A specifically.

$\neg B$

You can either 'push' the negation inside, using our various DeMorgans laws or the meaning of B if it is a predicate, or use contradiction:

```
Suppose, for contradiction, B.

:

Then ____, a contradiction.

Thus \neg B.
```

WHEN ASSUMED/KNOWN

$A \wedge B$

 $A \wedge B$. Then A.

Then B.

$\exists x \in D, B$

 $\exists x \in D, B.$

Let $x \in D$ such that B.

Question: How could you write the second line in two lines, using another term instead of "such that".

$A \lor B \to R$

 $A \lor B$ alone does not automatically expand. But as the hypothesis in an implication:

```
A \vee B.

Case: A

Then R.

Case: B

Then R.

In each case, R.

Since A \vee B, (at least) one of the cases is true, thus R.
```

$A \rightarrow B$

$$A \to B$$
.

This one does not automatically expand.

If we were filling in the proof, after $A \to B$ if we conclude A we may conclude B:

```
A \rightarrow B.

:

Then A.

Thus also B.
```

When filling in the proof we also have the option of using the contrapositive:

$$A \to B$$
.
 $Then \neg B \to \neg A$
 \vdots
 $Then \neg B$.
 $Thus also \neg A$.
 $A \leftrightarrow B$.
 $A \leftrightarrow B$.
 $Then (A \to B) \land (B \to A)$.

Now expand the \land appropriately.

$$\forall x \in D, B(x)$$

Traditionally people don't expand this (remember, we're not proving it). But here's a way to think about it (you may do this in your structures if you like).

$$\forall x \in D, B(x).$$

Then $B(d_1) \wedge B(d_2) \wedge B(d_3) \dots$, where the d_i s are the elements of D.

How to use this is discussed in detail in the lecture notes about "Reusing Results".

$\neg B$

This doesn't expand well.

Instead, we have the option of 'pushing' the \neg inside B with DeMorgan's Laws.