
Chapter 7

Numerical Systems

7.1 Floating-point systems

We can’t represent every real number on a computer. We use a “floating-point system”1 instead — given
a fixed β, fixed number of digits t, and a range [emin, emax] of exponents (integers), we can represent only
numbers of the form:

±d0.d1 . . . dt−1 × βe,

. . . where the di ∈ [0, β − 1] are called the digits (and the sequence of digits is called the mantissa), and
e ∈ [emin, emax] is the exponent. (There’s also a sign, costing at least a bit).

Here’s an example. If β = 10, t = 3, emin = −4, and emax = +4, then you can represent 1/4 as +0.25×100

or +2.50× 10−1. You can represent 1/3 as +3.33× 10−1 (note that +0.33× 100 loses one digit of precision).
Notice that there are multiple representations, so we agree on a normalized mantissa: we require that the
first digit d0 6= 0 unless we are representing 0 itself.

Using this normalized floating-point system:

• The smallest positive number is +1.00× 10−4 = 0.0001.

• The largest positive number is +9.99× 104 = 99900.

Another example. Suppose β = 2, t = 3, emin = −2, emax = +3. Numbers (other than 0) have the form

±1.d1d2 × 2e.

• Smallest positive number: (1.00)2 × 2−2 = 1/4.

• Largest positive number: (1.11)2 × 23 = 14.

Draw these out on a number line, and note that the larger numbers are spaced further apart, since a
difference of 1 in the last digit represents a larger magnitude when the exponent is larger). For example,
(1.01)2× 2−1− (1.00)2× 2−1 = 1/8, versus (1.01)2× 22− (1.00)2× 22 = 1. However, the percentage remains
constant:

1/8
2−1

= 1/4 =
1
22
.

7.2 Expressing real numbers

Rounding

Most numbers are not exactly representable in a floating-point system using a given base β. For example,
when β = 10, you cannot represent 1/3 exactly (no matter how large t is), so we used 3.33 × 10−1 when
t = 3. What should we do with something like the base of natural logarithms, e = 2.718281828 . . .? Two
approaches are used:

7-1

CHAPTER 7. NUMERICAL SYSTEMS 7-2

• Round to nearest: 2.72× 100.

• Truncate to zero: 2.71× 100.

Overflow

There is no way to represent a number larger than the largest floating-point number. In our first example,
there is no way to represent 99901 or greater.

Underflow

There is no way to represent a positive number smaller than the smallest positive floating-point number. In
our first example, there is no way to represent 0.00001 (or a smaller positive number).

Absolute rounding error

We can calculate the difference between the true value we’re trying to represent and the value of its floating-
point representation. For example, the absolute error in our representation of e is |2.71 − 2.718281828 . . . |
= |0.008281828 . . . |.

Relative error

100 and 100.1 are “closer” than 1 and 1.1, even though the absolute difference is 0.1 in both cases. Look at
the size of the error in terms of the size of the value being represented.

Relative error: For x 6= 0, the relative error between the approximate value x′ and the “real” value x is

|x− x′|
|x|

For example, |1.1− 1|/|1.1| = 0.0909 ≈ 9%. However, |100.1− 100|/|100| = 0.000999 · · · ≈ 0.1%.

Relative error in round-to-nearest

When we round numbers to represent them in a floating-point system, can we bound relative error for
positive numbers with no overflow or underflow?2.

In general, a number of the form
d0.d1 · · · dt−1dt · · · × βe

. . . gets rounded either up or down to one of

d0.d1 · · · (dt−1 + 1)× βe

d0.d1 . . . dt−1 × βe

The representation of the first number may be different (the +1 may cause a number of “carries” in the
addition), but the value is the same. The difference between these two numbers is simply a 1 in the position
occupied by dt−1, for a difference of 0.00 · · · 1 × βe = βe−(t−1). Since we round to nearest, our error is at
most half this value:

βe−(t−1)

2
.

The relative error can be calculated, since we use the convention that the leading digit, d0, is non-zero, so
the smallest denominator (hence the largest bound) is when d0 = 1, giving a relative error of:

|βe−(t−1)/2|
|1.0 · · · 0× βe|

=
β1−t

2

CHAPTER 7. NUMERICAL SYSTEMS 7-3

This matches our intuition that by increasing t (the number of digits) we get more precision.
In our example of a floating-point system with β = 2, t = 3, this gives a bound on the relative error

of round-to-nearest of 21−3/2 = 1/8. This is also clear from the number line or the 24 values in this
representation.

The IEEE standard

You may be familiar with using floating-point numbers in Java or other programming languages. Typically,
modern computers support the IEEE 754 standard that specifies the systems we use (sets β, t and [emin, emax])
and how they are physically stored in memory.

You will typically see two types of floating-point numbers: float or single-precision, which use 32 bits of
memory to represent a number, and double or double-precision, which use 64 bits. Single-precision numbers
have β = 2, t = 24, emin = −126, and emax = +127. Double-precision numbers have β = 2, t = 53,
emin = −1022, and emax = +1023.

7.3 Computing with floating point numbers

Addition

Addition in a floating-point system (and subtraction, which is just adding the negation) operates much like
schoolhouse addition. We need to line up the radix point, then do regular addition. For example, take
β = 10, t = 3, e ∈ [−2,+2], and consider the sum x+ y where x = 1.65× 102 and y = 2.71× 101. First we
need to get a common exponent (meaning usually one of the numbers must be denormalized) before doing
the addition:

1 . 6 5 ×102

+ 0 . 2 7 1 ×102

1 . 9 2 1 ×102

... and the answer must be rounded (and, if necessary, normalized) to 1.92 × 102. Note that during nor-
malization the exponent can change (for example, if a carry happened in the first digit or if the first digit
becomes zero).

Multiplication

For multiplication, we don’t need the exponents to agree: we can find the product of the mantissas first,
then add the exponents together. To compute x · y in this system:

1 . 6 5 ×102

× 2 . 7 1 ×101

4 . 4 7 1 5 ×103

... which is rounded (and, if necessary, normalized) to 4.47 × 103. In practice, we usually only need to
“remember” one extra digit (beyond the t digits) to figure out the rounding direction, so the exact answer
is never really computed (in this example, the “. . . 15” won’t be computed).

Accumulation of error

Since we can’t represent all real numbers exactly in a floating point representation, what happens when we
repeat operations? For example, take β = 10, t = 3, e ∈ [−2,+2], and consider the sum

100 + 0.1 + 0.1 + · · ·+ 0.1 [n times]

The first part of the sum, 100+0.1 is represented by 1.00×102. As we add additional terms with value 0.1, the
result is still 1.00× 102, since our representation cannot represent that additional 0.1. The relative error can

CHAPTER 7. NUMERICAL SYSTEMS 7-4

become arbitrarily large, given large enough n. If you play around with FloatExample.cumulativeError
(on the web page), with say t1 = 1.0, n ≥ 10, and t2 = 10−16, you’ll see this demonstrated.

The easy way to work around this particular problem (at least when n is not too big) is to add the 0.1
terms first, and then add the 100 — in other words, addition is not associative for floating-point numbers:
(a+ b) + c 6= a+ (b+ c).

Catastrophic cancellation

Use the same floating-point system as in the previous example to compute b2−4ac for b = 3.34, a = 1.22, and
c = 2.28. The exact value is 0.0292 = 2.92× 10−2, and this exact value is representable in our floating-point
system. Look at how the value is calculated, though:

b2 = (3.34)2

= 11.1556 ≈ 1.12× 101

4ac = 4× 1.22× 2.28
= 4.88× 2.28
= 11.1264 ≈ 1.11× 101

b2 − 4ac ≈ 1.12× 101 − 1.11× 101

= 0.01× 101 = 1.00× 10−1

Compared to our exact answer of 2.92× 10−2, this has a relative error of

|0.0292− 0.1|
0.0292

=
0.0708
0.0292

= 2.424 . . . > 240%.

Subtracting two floating-point numbers that are very close together leaves very few significant digits — a
great deal of information is lost. Since the true value is very small, the round-off error becomes much more
significant, and sometimes becomes much larger than the value being computed (see above).

The expression b2− 4ac crops up in the solution to the quadratic equation ax2 + bx+ c = 0. The general
form of the solution for the two roots x1 and x2 is

x1 =
−b+

√
b2 − 4ac

2a
x2 =

−b−
√
b2 − 4ac

2a
.

We may not have to worry about the large relative error in b2 − 4ac, since it may be small in absolute value
compared to −b. Here’s a case where computing x1 (using the values that lead to catastrophic cancellation
above) gives a fairly acceptable value using floating-point operations:

x1 =
−3.34 +

√
0.1

2× 1.22
=
−3.34 + 0.316

2.44
= −1.24

Compare this to the result if there were no error in the computation of b2 − 4ac, which is:

x1 =
−3.34 +

√
0.0292

2× 1.22
=
−3.34 + 0.171

2.44
= −1.30

. . . for a relative error of less than 5%.

7.4 Stability

There is a built-in problem with the formulas used above to compute the roots of a quadratic equation: if
b2 − 4ac is close to b2, then there will be catastrophic cancellation between −b and +

√
b2 − 4ac. This is

separate from the catastrophic cancellation that may happen if b2 is close to 4ac.
Definition: a formula (or algorithm) is called unstable iff errors in the input values get magnified

during the computation (i.e., iff the relative error in the final answer can be larger than the relative error in
the input values).

CHAPTER 7. NUMERICAL SYSTEMS 7-5

Dealing with instability

Our first example (100 + 0.1 + · · ·) was unstable, but there was an easy way to use a different algorithm that
is stable: perform the operations in a different order. Typically, if we’re adding up a series of numbers, we
always want to add the smallest ones together first (and repeat!).

Our second example (b2 − 4ac) was also unstable, because of potential catastrophic cancellation, and
there is, unfortunately, no easy fix. You could increase the number of significant digits to make the round-off
error smaller, but you will still have the potential for catastrophic cancellation when you subtract numbers
that are very close, even with your increased precision. The formula is unstable.

Our third example is also unstable (it includes the instability of example 2, plus its own instability), but
the possibility of cancellation between −b and +

√
b2 − 4ac can be avoid by changing the formula. Suppose

b > 0 (otherwise swap the role of x1 and x2 below if b < 0). Then avoid the subtraction in the numerator of
the quadratic formula:

x2 =
−b−

√
b2 − 4ac

2a
.

Since both −b and −
√
b2 − 4ac have the same (negative) sign, there will be no catastrophic cancellation.

Now compute x1 using x2

x1 =
c

ax2
(multiply the two roots to see this)

This formula involves no subtraction, so there is no catastrophic cancellation.
In general, there are two ways to deal with unstable formulas or algorithms:

• Increase the precision (the number of significant digits). This does not change the fact that the formula
or algorithm is unstable, but can help minimize the magnitude of the errors, for some inputs.

• Use a different, more stable algorithm or formula to compute the result. When possible, this is preferred.

Remember: floating-point numbers are not real numbers. They are very useful, but always be aware of
their limitations and when bad things might happen. Of course, not all cancellation or rounding errors are
catastrophic: you need to check the values you (plan to) use to see whether a problem will occur, and how
much you can trust your answer. Often unstable formulae are faster and work the majority of the time, so
are good enough in most cases.

7.5 Conditioning

In the previous example we examined the error produced in calculating the roots of ax2 + bx + c. The
numbers a, b, and c may come from measurement and already have some error associated with them. By
using a stable algorithm we get a relatively correct answer for slightly incorrect inputs.

But, independently of the particular algorithm used to compute roots, what can be said about the effect
that errors in the measurement of a, b, and c have on values of roots? That is, if the values of a, b, or c
change slightly, could the roots change dramatically?

To simply the discussion, let’s look at the special case of a quadratic formula x2− c = 0 (so we’re finding√
c).

Suppose that c = 0.25, but we use a bad approximation c′ = 0.36 instead of the true value. Then our
answer will be 0.6 instead of 0.5. The relative error in the input is 0.11/0.25 = 0.44, while the relative error
in the result is 0.1/0.5 = 0.2. Taking the square root makes the relative error smaller!

This isn’t something special about the particular case we chose. Let’s work the algebra to see the general
case of computing

√
c using an approximation c′ of c. The ratio of the relative error of the result to the

relative error of the input is (assuming c and c′ are close enough to have the same sign):

|
√
c−
√
c′|/|
√
c|

|c− c′|/|c|
=
√
c
|
√
c−
√
c′|

|c− c′|
[since |c|/

√
c =
√
c]

=
√
c

√
c+
√
c′

[since |c− c′| = (
√
c+
√
c′)(
√
c−
√
c′)].

CHAPTER 7. NUMERICAL SYSTEMS 7-6

This ratio is always less than 1 (so the error improves), and when c′ is very close to c, the ratio is close to
1/2. So the error is never increased, and as the measurements improve it is reduced to almost 1/2.

When computing the function f(x) using the approximation x′ instead of the true value x, we say that
the condition number is equal to the ratio of the relative error of the result and the relative error of the
input, i.e.:

|f(x)− f(x′)|/|f(x)|
|x− x′|/|x|

.

If you take the limit as x′ → x (and assume that f is differentiable, and that f(x) 6= 0), this is:

lim
x′→x

|f(x)− f(x′)|/|f(x)|
|x− x′|/|x|

=
|x|
|f(x)|

lim
x′→x

|f(x)− f(x′)|
|x− x′|

=
|xf ′(x)|
|f(x)|

For f(x) =
√
x, the condition number is (well, do the derivative)!3 Not all functions have good condition

numbers. Compute the condition number for cos(x),4 and you’ll see that you can get a huge condition
number by choosing an appropriate x.5

Relationship between conditioning and stability

A problem f (that is, computing some function f(n)) is well-conditioned iff exact computation of the
output doesn’t magnify the relative error of the input much.

An algorithm A for a problem f (that is, a method for computing f(n)) is stable iff it doesn’t magnify
the relative error of the input much.

See the difference? If an algorithm A is stable, then f is well-conditioned. (What’s the contrapositive?6)
The converse is not true: f might be well-conditioned but we can’t find a stable algorithm to compute it.

7.6 Truncation

We have looked at some errors caused by the necessity of computing on inexact inputs (either due to finite
precision of measurement, or finite precision of representation). However, even if our inputs were completely
exact, most algorithms do not compute exact values and then round them.

In practice, to add two numbers on a computer, the number with the smallest exponent is rounded to
“align”7 the decimal point with the number with the larger exponent, and then addition is carried out, for
example:

9.8765× 103 + 7.6543× 100 ≈ (9876.5 + 7.7)× 100 = 9.8842× 103

The true value is never computed. All arithmetic is implemented as a compromise between using small
amounts of time and storage, and losing as little information as possible. There are libraries that allow
arbitrary amounts of precision, but in the end this compromise is still necessary.

For other functions, like
√

1 + x or ex or sinx, we borrow tools from calculus, such as the Taylor series:8

√
1 + x = 1 +

x

2
− x2

8
+
x3

16
− 5x4

128
+ · · ·

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

Eventually computation has to stop, so these series are truncated. Take care with the order of operations
to avoid accumulated error and cancellation. In all cases, we’re stuck with an approximation of an infinite
series. Truncation is defined as using an approximate formula (for example, a finite sub-series of a Taylor
series) to compute a value. Calculus will provide you with a bound on how bad the approximation can be.

The truncation error is independent of the rounding error. Rounding error affects the input (use rounded
x′ instead of true x for the input) and the representation of the result. Truncation affects the computations
performed (instead of computing true function f(x′), compute truncated function f̂(x′)). Both sources
contribute to give your total error.

CHAPTER 7. NUMERICAL SYSTEMS 7-7

7.7 Error summary

we want we get

exact value: x approximate value: x′

exact function: f approximate function: f̂
exact result: f(x) computed result: f̂(x′)

The absolute error for the entire computation has two sources of error. The first term is contributed by
truncation or instability, the second term is due to rounding (in measurement or representation):

|f̂(x′)− f(x)| = |(f̂(x′)− f(x′)) + (f(x′)− f(x))|.

Exercises

1. Suppose you have a floating-point representation that has β = 10 (base, or radix, 10), t = 5 digits, and
e ∈ {−5, 5}. Suppose x and y are non-zero numbers that are represented by x′ and y′ (respectively)
without overflow in your representation, using round-to-nearest. (In the questions below, you may
express your result as a fraction, or use a calculator.)

(a) What is the largest possible relative error, |x− x′|/|x|. Explain your answer.9

(b) If x = 3.0000500000 and y = 3.0000499999, what is the relative error |(x−y)−(x′−y′)|/|x−y|?10

(c) What is the relative error if, in the previous part, we increase precision from t = 5 to t = 8
digits?11

2. Consider the IEEE floating-point standard systems.

(a) What is the maximum relative error in representing a real number in single-precision, when neither
overflow nor underflow occurs?

(b) How many decimal digits can we guarantee will be represented exactly when using single-precision
numbers? How about when using double-precision numbers?

(c) Notice that, when moving from single-precision to double-precision, the number of mantissa digits
more than doubles, but the range of exponents only increases slightly (adding just a few bits).
Why do you think this choice might have been made, allocating nearly all of the new bits to the
mantissa?

3. Computing the expression x2 − 4 is susceptible to error for certain values of x.

(a) Explain what kind of error can occur and for what values of x it occurs. Illustrate your claim
with an example.

(b) Is computing this expression (in this form) stable? Explain why or why not.

(c) Reformulate the expression to reduce the error you described in (a). Explain how this error is
reduced in your new formulation.

CHAPTER 7. NUMERICAL SYSTEMS 7-8

Chapter 7 Notes

1The name “floating-point system” comes from the fact that the actual location of radix point (decimal
point or binary point) “floats” depending on the exponent. A “fixed-point system” has the radix point
always in the same location, something that’s useful for, say, accounting software (to represent dollars and
cents).

2In fact, with overflow or underflow, the error can be arbitrarily large.

31/2.

4Did you get |x tan(x)|?
5Such as x close to π/2 radians.

6If f is not well-conditioned, then there is no stable algorithm for computing it.

7Reflecting the limit, t, on the number of digits.

8You’ll probably see more about Taylor series in your calculus course. We won’t study it here.

9The smallest numerator, for a given exponent e, is x ≥ 1.0000× 10e. Since x is rounded to the nearest
value, it differs from x′ by, at most, half the increment of the last digit, or 0.0001× 10e/2 = 10e−4/2. This
means that the relative error is, at most, 10−4/2, or .005%.

10x′ rounds up x, so x′ = 3.0001, y′ rounds down y, so y′ = 3.0000, so x′ − y′ = 0.0001, whereas x− y =
0.0000000001, so the relative error is

|0.0000000001− 0.0001|
|0.0000000001|

= 999999 = 99999900%

11In this case x′ represents x perfectly, so x′ = 3.0000500, while y′ rounds y up, so y′ = 3.0000500. Thus,
x′ − y′ = 0.0000000, and the relative error is

|0.0000000001|
|0.0000000001|

= 1 = 100%

