
Chapter 5

Analyzing Algorithms

So far we have been proving statements about databases, mathematics and arithmetic, or sequences of
numbers. Though these types of statements are common in computer science, you’ll probably encounter
algorithms most of the time. Often we want to reason about algorithms and even prove things about them.
Wouldn’t it be nice to be able to prove that your program is correct? Especially if you’re programming a
heart monitor or a NASA spacecraft?

In this chapter we’ll introduce a number of tools for dealing with computer algorithms, formalizing their
expression, and techniques for analyzing properties of algorithms, so that we can prove correctness or prove
bounds on the resources that are required.

5.1 Binary (base 2) notation

Let’s first think about numbers. In our everyday life, we write numbers in decimal (base 10) notation
(although I heard of one kid who learned to use the fingers of her left hand to count from 0 to 31 in base 2).
In decimal, the sequence of digits 20395 represents (parsing from the right):

5 + 9(10) + 3(100) + 0(1000) + 2(10000) =

5(100) + 9(101) + 3(102) + 0(103) + 2(104)

Each position represents a power of 10, and 10 is called the base. Each position has a digit from [0, 9]
representing how many of that power to add. Why do we use 10? Perhaps due to having 10 fingers
(however, humans at various times have used base 60, base 20, and mixed base 20,18 (Mayans)). In the last
case there were (105)20,18 days in the year. Any integer with absolute value greater than 1 will work (so
experiment with base −2).

Consider using 2 as the base for our notation. What digits should we use?1 We don’t need digits 2 or
higher, since they are expressed by choosing a different position for our digits (just as in base 10, where there
is no single digit for numbers 10 and greater).

Here are some examples of binary numbers:

(10011)2

represents
1(20) + 1(21) + 0(22) + 0(23) + 1(24) = (19)10

We can extend the idea, and imitate the decimal point (with a “binary point”?) from base 10:

(1011.101)2 = 19
5
8

How did we do that?2 Here are some questions:

5-1

CHAPTER 5. ANALYZING ALGORITHMS 5-2

• How do you multiply two base 10 numbers?3 Work out 37× 43.

• How do you multiply two binary numbers?4

• What does “right shifting” (eliminating the right-most digit) do in base 10?5

• What does “right shifting” do in binary?6

• What does the rightmost digit tell us in base 10? In binary?

Convert some numbers from decimal to binary notation. Try 57. We’d like to represent 57 by adding either
0 or 1 of each power of 2 that is no greater than 57. So 57 = 32 + 16 + 8 + 1 = (111001)2. We can also fill
in the binary digits, systematically, from the bottom up, using the % operator (the remainder after division
operator, at least for positive arguments):

57%2 = 1 so (?????1)2

(57− 1)/2 = 28%2 = 0 so (????01)2

28/2 = 14%2 = 0 so (???001)2

14/2 = 7%2 = 1 so (??1001)2

(7− 1)/2 = 3%2 = 1 so (?11001)2

(3− 1)/2 = 1%2 = 1 so (111001)2

Addition in binary is the same as (only different from...) addition in decimal. Just remember that
(1)2 + (1)2 = (10)2. If we add two binary numbers, this tells us when to “carry” 1:

1011
+ 1011

10110

log2

How many 5-digit binary numbers are there (including those with leading 0s)? These numbers run from
(00000)2 through (11111)2, or 0 through 31 in decimal — 32 numbers. Another way to count them is to
consider that there are two choices for each digit, hence 25 strings of digits. If we add one more digit we get
twice as many numbers. Every digit doubles the range of numbers, so there are two 1-digit binary numbers
(0 and 1), four 2-digit binary numbers (0 through 3), 8 3-digit binary numbers (0 through 7), and so on.

Reverse the question: how many digits are required to represent a given number. In other words, what
is the smallest integer power of 2 needed to exceed a given number? log2 x is the power of 2 that gives
2log2 x = x. You can think of it as how many times you must multiply 1 by 2 to get x, or roughly the number
of digits in the binary representation of x. (The precise number of digits needed is b(log2 x) + 1c, which is
equal to (why?) blog2 xc+ 1).

Loop invariant for base 2 multiplication

Integers are naturally represented on a computer in binary, since a gate can be in either an on or off (1 or
0) position. It is very easy to multiply or divide by 2, since all we need to do is perform a left or right shift
(an easy hardware operation). Similarly, it is also very easy to determine whether an integer is even or odd.

Putting these together, we can write a multiplication algorithm that uses these fast operations:

CHAPTER 5. ANALYZING ALGORITHMS 5-3

public class MultiplicationExample {

/**
* mult multiplies m times n.
* @arg m a natural number
* @arg n an integer
* @return mn
* precondition: m >= 0
*/

public static int mult(int m, int n) {
int x = m;
int y = n;
int z = 0;
// loop invariant: z = mn - xy
while (x != 0) {
if (x % 2 == 1) { // x odd
z = z + y;

}
x = x >> 1; // x = x div 2 (right shift)
y = y << 1; // y = 2y (left shift)

}
// post condition: z = mn
return z;

}

}

After reading this algorithm, there is no reason you should believe it actually multiplies two integers:
we’ll need to prove it to you. Let’s consider the precondition first. We can always ensure that m ≥ 0 (how?7).
The postcondition states that z, the value that is returned, is equal to the product of m and n (that would
be nice, but we’re not convinced).

Let’s look at the stated loop invariant. A loop invariant is a relationship between the variables that is
always true at the start and at the end of a loop iteration (we’ll need to prove this). It’s sufficient to verify
that the invariant is true at the start of first iteration, and verify that if the invariant is true at the start of
any iteration, it must be true at the end of the iteration.8 Before we start the loop, we set x = m, y = n
and z = 0, so it is clear that z = mn − xy = mn −mn = 0. Now we need to show that if z = mn − xy
before executing the body of the loop, and x 6= 0, then after executing the loop body, z = mn − xy is still
true (can you write this statement formally?). Here’s a sketch of a proof:

Let x′, y′, z′, x′′, y′′, z′′,m, n ∈ Z, and assume the ′ elements related to the ′′ elements by the action of
the loop. Assume m ≥ 0. Observe that the values of m and n are never changed in the loop.

Assume z′ = mn− x′y′.
Case 1: x′ odd.

Then z′′ = z′ + y′, x′′ = (x′ − 1)/2, and y′′ = 2y′.
So

mn− x′′y′′ = mn− (x′ − 1)/2 · 2y′ (since x′ is odd)
= mn− x′y′ + y′

= z′ + y′

= z′′

Case 2: x′ even.
Then z′′ = z′, x′′ = x′/2, and y′′ = 2y′.

CHAPTER 5. ANALYZING ALGORITHMS 5-4

So

mn− x′′y′′ = mn− x′/2 · 2y′

= mn− x′y′

= z′

= z′′

Since x′ is either even or odd, in all cases mn− x′′y′′ = z′′

Thus mn− x′y′ = z′ ⇒ mn− x′′y′′ = z′′.
Since x′, x′′, y′, y′′, z′, z′′,m, n are arbitrary elements of Z,
∀x′, x′′, y′, y′′, z′, z′′,m, n ∈ Z,mn− x′y′ = z′ ⇒ mn− x′′y′′ = z′′.

We should probably verify the postcondition to fully convince ourselves of the correctness of this algo-
rithm. We’ve shown the loop invariant holds, so let’s see what we can conclude when the loop terminates
(i.e., when x = 0). By the loop invariant, z = mn− xy = mn− 0 = mn, so we know we must get the right
answer (assuming the loop eventually terminates).

We should now be fairly convinced that this algorithm is in fact correct. One might now wonder, how
many iterations of the loop are completed before the answer is returned?

5.2 Run time and constant factors

When calculating the running time of a program, we may know how many basic “steps” it takes as a function
of input size, but we may not know how long each step takes on a particular computer. We would like to
estimate the overall running time of an algorithm while ignoring constant factors (like how fast the CPU
is). So, for example, if we have 3 machines, where operations take 3µs, 8µs and 0.5µs, the three functions
measuring the amount of time required, t(n) = 3n2, t(n) = 8n2, and t(n) = n2/2 are considered the same,
ignoring (“to within”) constant factors (the time required always grows according to a quadratic function in
terms of the size of the input n).

The nice thing is that this means that lower order terms can be ignored as well! So f(n) = 3n2 and
g(n) = 3n2 + 2 are considered “the same”, as are h(n) = 3n2 + 2n and j(n) = 5n2. Notice that

∀n ∈ N, n ≥ 1⇒ f(n) ≤ g(n) ≤ h(n) ≤ j(n)

but there’s always a constant factor that can reverse any of these inequalities.
Really what we want to measure is the growth rate of functions (and in computer science, the growth

rate of functions that bound the running time of algorithms). You might be familiar with binary search and
linear search (two algorithms for searching for a value in a sorted array). Suppose one computer runs binary
search and one computer runs linear search. Which computer will give an answer first, assuming the two
computers run at roughly the same CPU speed? What if one computer is much faster (in terms of CPU
speed) than the other, does it affect your answer? What if the array is really, really big?

How large is “sufficiently large?”

Is binary search a better algorithm than linear search?9 It depends on the size of the input. For example,
suppose you established that linear search has complexity L(n) = 3n and binary search has complexity
B(n) = 9 log2 n. For the first few n, L(n) is smaller than B(n). However, certainly for n > 10, B(n) is
smaller, indicating less “work” for binary search.

When we say “large enough” n, we mean we are discussing the asymptotic behaviour of the complexity
function, and we are prepared to ignore the behaviour near the origin.

CHAPTER 5. ANALYZING ALGORITHMS 5-5

5.3 Asymptotic notation: Making Big-O precise

We define R≥0 as the set of nonnegative real numbers, and define R+ as the set of positive real numbers.
Now here’s the precise definition of “The set of functions that, ignoring a constant, are eventually no more
than f”:
Definition: For any function f : N→ R

≥0 (i.e., any function mapping naturals to nonnegative reals), let

O(f) = {g : N→ R
≥0 | ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ g(n) ≤ cf(n)}.

Saying g ∈ O(f) says that “g grows no faster than f” (or equivalently, “f is an upper bound for g), so
long as we modify our understanding of “growing no faster” and being an “upper bound” with the practice
of ignoring constant factors. Now we can prove some theorems.

Suppose g(n) = 3n2 + 2 and f(n) = n2. Then g ∈ O(f). We need to prove that ∃c ∈ R+,∃B ∈ N,∀n ∈
N, n ≥ B ⇒ 3n2 + 2 ≤ cn2. It’s enough to find some c and B that “work” in order to prove the theorem.

Finding c means finding a factor that will scale n2 up to the size of 3n2 + 2. Setting c = 3 almost works,
but there’s that annoying additional term 2. Certainly 3n2 +2 < 4n2 so long as n ≥ 2, since n ≥ 2⇒ n2 > 2.
So pick c = 4 and B = 2 (other values also work, but we like the ones we thought of first). Now concoct a
proof of

∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ 3n2 + 2 ≤ cn2.

Let c = 4.
Then c ∈ R+.
Let B = 2.

Then B ∈ N.
Let n ∈ N be arbitrary.

Assume n ≥ B.
Then n2 ≥ B2 = 4. (squaring is monotonic on natural numbers.)
So n2 ≥ 2.
So 3n2 + n2 ≥ 3n2 + 2. (adding 3n2 to both sides of the inequality).
So 3n2 + 2 ≤ 4n2.

Thus, n ≥ B ⇒ 3n2 + 2 ≤ 4n2.
Since n is an arbitrary natural number, ∀n ∈ N, n ≥ B ⇒ 3n2 + 2 ≤ 4n2.

Since B is a natural number, ∃B ∈ N,∀n ∈ N, n ≥ B ⇒ 3n2 + 2 ≤ cn2.
Since c is a positive real number, ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ 3n2 + 2 ≤ cn2.

So, by definition, g ∈ O(f).
Now suppose that g(n) = n4 and f(n) = 3n2. Is g ∈ O(f)? No. We can see intuitively that any constant

that we multiply times 3n2 will be overwhelmed by the extra factor of n2 in g(n). But to show this clearly,
we negate the definition and then prove the negation:

∀c ∈ R+,∀B ∈ N,∃n ∈ N, n ≥ B ∧ n4 > c3n2.

The parameter we have some control over is n, and we need to pick it so that n ≥ B and n4 > c3n2.
Solve for n:

n4 > c3n2

⇔ n4/n2 > c3n2/n2 (when n > 0)

⇔ n2 > 3c

⇔ n >
√

3c.

Notice that we were reasoning backwards (bottom up) here: we need to pick a condition on n so that
n4 > c3n2 would hold (hence why everything had to be an equivalence). Notice also that we needed to
assume that n > 0 (to avoid division by zero). So to satisfy the conditions, we can set n = B + d

√
3ce+ 1.

Since
√

3c is not necessarily a natural number, we take its ceiling. Now we can generate the proof.

CHAPTER 5. ANALYZING ALGORITHMS 5-6

Let c ∈ R+. Let B ∈ N.
Let n = B + d

√
3ce+ 1.

Then n ∈ N. (since B ∈ N, 1 ∈ N, and d
√

3ce ∈ N (since c > 0) and N is closed under sums).
So n ≥ B (since it is the sum of B and two other non-negative numbers).
So n ≥ d

√
3ce+ 1. (since B ≥ 0)

So n2 > (d
√

3ce+ 1)2.
So n2 > 3c. (ignoring some positive terms).
So n4 > 3cn2.

Since n is a natural number, ∃n ∈ N, n ≥ B ∧ n4 > c3n2.
Since c is an arbitrary element of R+ and B is an arbitrary element of N, ∀c ∈ R+,∀B ∈ N,∃n ∈
N, n ≥ B ∧ n4 > c3n2.
By definition, this means that g /∈ O(f).

a more complex example

Let’s prove that 2n3 − 5n4 + 7n6 is in O(n2 − 4n5 + 6n8). We begin with:

Let c = . Then c ∈ R+.
Let B = . Then B ∈ N.

Let n ∈ N. Suppose n ≥ B.
Then 2n3 − 5n4 + 7n6 ≤ · · · ≤ c(n2 − 4n5 + 6n8).

Thus ∀n ∈ N, n ≥ B ⇒ 2n3 − 5n4 + 7n6 ≤ c(n2 − 4n5 + 6n8).
Since B is a natural number, and since c is a positive real number,
∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ 2n3 − 5n4 + 7n6 ≤ c(n2 − 4n5 + 6n8).

To fill in the · · · we try to form a chain of inequalities, working from both ends, simplifying the expressions:

2n3 − 5n4 + 7n6 ≤ 2n3 + 7n6 (drop −5n4 because it doesn’t help us in an important way)

≤ 2n6 + 7n6 (increase n3 to n6 because we have to handle n6 anyway)

= 9n6

≤ 9n8 (simpler to compare)

= 2(9/2)n8 (get as close to form of the simplified end result: now choose c = 9/2)

= 2cn8

= c(−4n8 + 6n8) (reading bottom up: decrease −4n5 to −4n8 because we have to
handle n8 anyway)

≤ c(−4n5 + 6n8) (reading bottom up: drop n2 because it doesn’t help us in an
important way)

≤ c(n2 − 4n5 + 6n8)

We never needed to restrict n in any way beyond n ∈ N (which includes n ≥ 0), so now fill in c = 9/2, b = 0,
and complete the proof.

Let’s use this approach to reprove n4 /∈ O(3n2).

Let c ∈ R+.
Let B ∈ N.

Let n = .
· · ·
So n ∈ N.
· · ·
So n ≥ B.
· · ·
So n4 > c3n2.

Thus ∀c ∈ R+,∀B ∈ N,∃n ∈ N, n ≥ B ∧ n4 > c3n2.

CHAPTER 5. ANALYZING ALGORITHMS 5-7

Here’s our chain of inequalities (the third · · ·):

And n4 ≥ n3 (don’t need full power of n4)

= n · n2 (make form as close as possible)

> c · 3n2 (if we make n > 3c and n > 0).

Now pick n = max(B, d3c+ 1e).
The first · · · is:

Since c > 0, 3c+ 1 > 0, so d3c+ 1e ∈ N.
Since B ∈ N, max(B, d3c+ 1e) ∈ N.

The second · · · is:

max(B, d3c+ 1e) ≥ B.

We also note just before the chain of inequalities:

n = max(B, d3c+ 1e) ≥ d3c+ 1e ≥ 3c+ 1 > 3c.

Some points to note are:

• Don’t “solve” for n until you’ve made the form of the two sides as close as possible.

• You’re not exactly solving for n: you are finding a condition of the form n > that makes the desired
inequality true. You might find yourself using the max function a lot.

• Be careful that you aren’t “solving” for n in the wrong direction: the first time we reasoned that
n4 > c3n2 ⇒ n >

√
3c, but the proof needs the reverse direction. Luckily, each of the steps were

reversible (i.e., they were all equivalences), yielding the needed line of reasoning.

Other bounds

In analogy with O(f), consider two other definitions:

Definition: For any function f : N→ R
≥0, let

Ω(f) = {f : N→ R
≥0 | ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ g(n) ≥ cf(n)}.

To say “g ∈ Ω(f)” expresses the concept that “g grows at least as fast as f .” (f is a lower bound on g).

Definition: For any function f : N→ R
≥0, let

Θ(f) = {g : N→ R
≥0 | ∃c1 ∈ R+,∃c2 ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ c1f(n) ≤ g(n) ≤ c2f(n)}.

To say “g ∈ Θ(f)” expresses the concept that “g grows at the same rate as f .” (f is a tight bound for
g, or f is both an upper bound and a lower bound on g).

Some theorems

Here are some general results that we now have the tools to prove.

• f ∈ O(f).

• (f ∈ O(g) ∧ g ∈ O(h))⇒ f ∈ O(h).

• g ∈ Ω(f)⇔ f ∈ O(g).

• g ∈ Θ(f)⇔ g ∈ O(f) ∧ g ∈ Ω(f).

CHAPTER 5. ANALYZING ALGORITHMS 5-8

Test your intuition about Big-O by doing the “scratch work” to answer the following questions:

• Are there functions f, g such that f ∈ O(g) and g ∈ O(f) but f 6= g?10

• Are there functions f, g such that f 6∈ O(g), and g 6∈ O(f)?11

To show that (f ∈ O(g) ∧ g ∈ O(h)) ⇒ f ∈ O(h), we need to find a constant c ∈ R+ and a constant
B ∈ N, that satisfy:

∀n ∈ N, n ≥ B ⇒ f(n) ≤ ch(n).

Since we have constants that scale h to g and then g to f , it seems clear that we need their product to scale
g to f . And if we take the maximum of the two starting points, we can’t go wrong. Making this precise:

Theorem 1: For any functions f, g, h : N→ R
≥0, we have (f ∈ O(g) ∧ g ∈ O(h))⇒ f ∈ O(h).

Proof:

Assume f ∈ O(g) ∧ g ∈ O(h).
So f ∈ O(g).
So g ∈ O(h).
So ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n > B ⇒ f(n) ≤ cg(n). (by defn. of f ∈ O(g)).
Let cg ∈ R+, Bg ∈ N be such that ∀n ∈ N, n ≥ B ⇒ f(n) ≤ cgg(n).
So ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ g(n) ≤ ch(n). (by defn. of g ∈ O(h)).
Let ch ∈ R+, Bh ∈ N be such that ∀n ∈ N, n ≥ Bh ⇒ g(n) ≤ chh(n).
Let c = cgch. Let B = max(Bg, Bh).

Let n ∈ N be arbitrary.
Assume n ≥ B.

Then n ≥ Bh (definition of max), so g(n) ≤ chh(n).
Then n ≥ Bg (definition of max), so f(n) ≤ cgg(n) ≤ cgchh(n).
So f(n) ≤ ch(n).

So n ≥ B ⇒ f(n) ≤ ch(n).
Since n is an arbitrary natural number, ∀n ∈ N, n ≥ B ⇒ f(n) ≤ ch(n).

Since c is a positive real number, and since B is a natural number,
∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ f(n) ≤ ch(n).
So f ∈ O(g), by definition.

So (f ∈ O(g) ∧ g ∈ O(h))⇒ f ∈ O(h).

To show that g ∈ Ω(f)⇔ f ∈ O(g), it is enough to note the the constant, c, for one direction is positive, so
its reciprocal will work for the other direction.12

Theorem 2: For any functions f, g : N→ R
≥0, we have g ∈ Ω(f)⇔ f ∈ O(g).

Proof:

g ∈ Ω(f)
⇔ (definition)
∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ g(n) ≥ cf(n)
⇔ (by letting c′ = 1/c and B′ = B).
∃c′ ∈ R+,∃B′ ∈ N,∀n ∈ N, n ≥ B′ ⇒ f(n) ≤ c′g(n)
⇔ (definition)
f ∈ O(g)

To show g ∈ Θ(f)⇔ g ∈ O(f) ∧ g ∈ Ω(f), it’s really just a matter of unwrapping the definitions.

Theorem 3: For any functions f, g : N→ R
≥0, we have g ∈ Θ(f)⇔ g ∈ O(f) ∧ g ∈ Ω(f).

CHAPTER 5. ANALYZING ALGORITHMS 5-9

Proof:

g ∈ Θ(f)
⇔ (definition)
∃c1 ∈ R+,∃c2 ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ c1f(n) ≤ g(n) ≤ c2f(n).
⇔ (combined inequality, and B = max(B1, B2)).
∃c1 ∈ R+,∃B1 ∈ N,∀n ∈ N, n ≥ B1 ⇒ g(n) ≥ c1f(n) ∧ ∃c2 ∈ R+,∃B2 ∈ N,∀n ∈ N, n ≥ B2 ⇒ g(n) ≤
c2f(n)
⇔ (definition)
g ∈ Ω(f) ∧ g ∈ O(f)

Taxonomy of results

A lemma is a small result needed to prove something we really care about. A theorem is the main result
that we care about (at the moment). A corollary is an easy (or said to be easy) consequence of another
result. A conjecture is something suspected to be true, but not yet proven.

Here’s an example of a conjecture whose proof has evaded the best minds for over 70 years. Maybe you’ll
prove it.

Define f(n), for n ∈ N by:

f(n) =

{
n/2, n even
3n+ 1, n odd

Let’s define f2(n) as f(f(n)), and define fk+1(n) as f(fk(n)). Here’s the conjecture:

Conjecture: ∀n ∈ N,∃k ∈ N, fk(n) = 1.

Easy to state, but (so far) hard to prove or disprove.
Here’s an example of a corollary that recycles some of the theorems we’ve already proven (so we don’t

have to do the grubby work). To show g ∈ Θ(f) ⇔ f ∈ Θ(g), I re-use theorems proved above and the
commutativity of ∧:

Corollary: For any functions f, g : N→ R
≥0, we have g ∈ Θ(f)⇔ f ∈ Θ(g).

Proof:

g ∈ Θ(f)
⇔ (by Theorem 3)
g ∈ O(f) ∧ g ∈ Ω(f).
⇔ (by Theorem 2)
g ∈ O(f) ∧ f ∈ O(g)
⇔ (by commutativity of ∧)
f ∈ O(g) ∧ g ∈ O(f)
⇔ (by Theorem 2)
f ∈ O(g) ∧ f ∈ Ω(g)
⇔ (by Theorem 3)
f ∈ Θ(g).

A very important note

Note that asymptotic notation (the Big-O, Big-Ω, and Big-Θ definitions) bound the asymptotic growth rates
of functions, as n approaches infinity. Often in computer science we use this asymptotic notation to bound
functions that express the running times of algorithms, perhaps in best case or in worst case. Asymptotic
notation does not express or bound the worst case or best case running time, only the functions expressing
these values.

This distinction is subtle, but crucial to understanding both running times and asymptotic notation. If
this warning doesn’t seem important to you now, come back and read this again in a few weeks, months, or
courses. You’ll thank me later.

CHAPTER 5. ANALYZING ALGORITHMS 5-10

Exercises

1. Prove or disprove the following claims:

(a) 7n3 + 11n2 + n ∈ O(n3) 13

(b) n2 + 165 ∈ Ω(n4)

(c) n! ∈ O(nn)

(d) n ∈ O(n log2 n)

(e) ∀k ∈ N, k > 1⇒ logk n ∈ Θ(log2 n)

2. Define g(n) =

{
n3/165, n < 165⌈√

6n5
⌉
, n ≥ 165

. Note that ∀x ∈ R, x ≤ dxe < x+ 1.

Prove that g ∈ O(n2.5).

3. Let F be the set of functions from N to R≥0. Prove or disprove the following claims:

(a) ∀f ∈ F ,∀g ∈ F , f ∈ O(g)⇒ (f + g) ∈ Θ(g)

(b) ∀f ∈ F ,∀f ′ ∈ F ,∀g ∈ F , (f ∈ O(g) ∧ f ′ ∈ O(g))⇒ (f + f ′) ∈ O(g)

4. For each function f in the left column, choose one expression O(g) from the right column such that
f ∈ O(g). Use each expression exactly once.

(i) 3 · 2n ∈

(ii) 2n4+1
n3+2n−1 ∈

(iii) (n5 + 7)(n5 − 7) ∈

(iv) n4−n log2 n
n2+1 ∈

(v) n log2 n
n−5 ∈

(vi) 8 + 1
n2 ∈

(vii) 23n+1 ∈
(viii) n! ∈

(ix) 5 log2(n+1)
1+n log2 3n ∈

(x) (n− 2) log2(n3 + 4) ∈

(a) O(1
n)

(b) O(1)

(c) O(log2 n)

(d) O(n)

(e) O(n log2 n)

(f) O(n2)

(g) O(n10)

(h) O(2n)

(i) O(10n)

(j) O(nn)

CHAPTER 5. ANALYZING ALGORITHMS 5-11

Chapter 5 Notes

1From 0 to (2− 1), if we work in analogy with base 10.

2To parse the 0.101 part, calculate 0.101 = 1(2−1) + 0(2−2) + 1(2−3).

3You should be able to look up this algorithm in an elementary school textbook.

4Same as the previous exercise, but only write numbers that have 0’s and 1’s, and do binary addition.

5Integer divides by 10.

6Integer divide by 2.

7If only one of m,n are negative, ensure n is the negative one, perhaps by swapping. If both of m,n are
negative, negate both of them and then call mult.

8This is the principle of mathematical induction, which you’ll study in detail in CSC 236.

9Better in the sense of time complexity.

10Sure, f = n2, g = 3n2 + 2.

11Sure. f and g don’t need to both be monotonic, so let f(n) = n2 and

g(n) =

{
n, n even
n3, n odd

So not every pair of functions from N→ R
≥0 can be compared using Big-O.

12Let’s try the symmetrical presentation of bi-implication.

13The claim is true.
Let c = 8. Then c ∈ R+.

Let B = 12. Then B ∈ N.
Let n ∈ N. Assume n ≥ B.

Then n3 = n× n2 ≥ 12× n2 = 11× n2 + n2. (since n ≥ B = 12).
So n2 ≥ 12n. (since n ≥ 12, multiplying both sides by n > 0).
So 12 > 1⇒ 12n > n. (Multiplying both sides by n > 0).
So n3 ≥ 12n2 = 11n2 + n2 ≥ 11n2 + 12n ≥ 11n2 + n.
So 7n3 ≥ 7n3.
Thus cn3 = 8n3 = 7n3 + n3 ≥ 7n3 + 11n2 + n. (adding the two inequalities).

So n ≥ B ⇒ 7n3 + 11n2 + n ≤ cn3.
Since n is an arbitrary element of N, ∀n ∈ N, n ≥ B ⇒ 7n3 + 11n2 + n ≤ cn3.

Since B is a natural number, ∃B ∈ N,∀n ∈ N, n ≥ B ⇒ 7n3 + 11n2 + n ≤ cn3.
Since c is a real positive number, ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ 7n3 + 11n2 + n ≤ cn3.
By definition, 7n3 + 11n2 + n ∈ O(n3).

