
CSC 165 Assignment # 1 — Sample Solutions Fall 2007

1. [10 marks] = 2 + 5 + 2 + 1 each part

(a) There will be an even number of white socks in the drawer at the end of the day.

(b) Let wi be the number of white socks in the drawer at the beginning of the day.
Let wf be the number of white socks in the drawer at the end of the day.
We must prove that even(wi) ⇒ even(wf).
Assume even(wi).

Maureen will draw two socks from the drawer. There are three possibilities:
Either the socks are different colours ∨ the socks are both black vee the socks are both
white.
Case 1: Suppose the socks drawn are different colours.

Then the white sock is returned to the drawer.
So wf = wi − 1 + 1 (since we removed and added one white sock).
Thus wf = wi.
thus even(wf).

Case 1: Suppose both socks drawn are black.
Then one black sock from the pile is added to the drawer.
So wf = wi (because we don’t remove or add a white sock).
Thus even(wf).

Case 2: Suppose both socks drawn are white.
Then one black sock from the pile is added to the drawer.
Thus wf = wi − 2 (because we removed two white socks and added none).
Thus even(wf).

Thus even(wf)
Hence even(wi) ⇒ even(wf).
(Formally, we prove ∀wi ∈ N,∀wf ∈ N, if wi and wf are related by the above procedure such
that wi is the number of white socks at the start of the day and wf is the number of socks at
the end of the day, then even(wi) ⇒ even(wf).)

(c) Black. By part (b), we proved that after each day, the parity of white socks remains the same.
Therefore, if the initial number of white socks in the drawer is even, after each day (including
the last day) there will still be an even number of white socks. If there is only one sock left, it
cannot be white, and must be black.

(d) White. By a similar argument to (c).

2. [14 marks] = 4 + 10 each part

(a) We want to construct an array in such a way that the algorithm will run the maximum number
of steps possible.

Assume we ran the algorithm on some worst-case input array A. We will now describe this run
of the algorithm.

Key Point 1: To run the maximum number of steps, we want the condition in line 3 (that is,
A[i] ≥ b) to be true for every iteration of the outer for-loop.

Key Point 2: When the condition in line 3 is true, b gets reset in line 4 to b = A[i]. Since we
want line 3’s condition to always be true, we know that b will be reset in every iteration i to
b = A[i].

University of Toronto, Department of Computer Science Page 1 of 5

CSC 165 Assignment # 1 — Sample Solutions Fall 2007

We now need to track how b varies in the outer for-loop, to determine how to design A (so that
the condition in line 3 is always true).

Before the loop
b = A[0]

Considering each iteration of the outer loop

when i = 0
A[i] = A[0] ≥ A[0] = b
So A[i] ≥ b, and b gets reset at line 4 to b = A[0].

when 1 ≤ i + 1 < A.length:
From Key Point 2, we know that at the beginning of iteration i + 1, b = A[i] (since it was
set to that in the previous iteration).
Since (from Key Point 1) we want A[i + 1] ≥ b to be true, then we want A[i + 1] ≥ A[i] to
be true.
So we should make A[i + 1] ≥ A[i].

Therefore, a worst case input array A is one where for each index i (with 1 ≤ i+1 < A.length),
A[i + 1] ≥ A[i]. In other words, A should be sorted in non-decreasing order.

So A = [1, 1, . . . , 1] or A = [1, 2, 3, . . . , n] are worst-case inputs for this algorithm.

(b) We have two general approaches to try to prove this statement:

(1) figure out (and prove) an expression for T (n), then show this expression is in Θ(n2), or
(2) bound T (n) above and below by expressions that grow like n2.

Typically, the second way is easier (less stuff to prove).
Let’s try the first way. First we must derive and prove an expression for T (n):
Lemma 1: T (n) = n2 + 4n + 2. 1

Proof : To determine the number of steps the algorithm runs in the worst case, we need to
determine the number of iterations in both the outer and inner loop.
Number of iterations in the outer for-loop:

The outer for-loop executes n iterations.
Number of iterations in the inner for-loop:

Recall from 1(a) that for a worst case array, the if condition in line 3 should be true for
every iteration of the outer for-loop.
Therefore, line 6 is executed in every iteration of the outer for-loop.
So the inner for-loop is reached for all i, 0 ≤ i ≤ n− 1.
For each value of i, the inner for-loop runs i iterations (for j set to each of 0, 1, . . . , i−1).
Total number of inner for-loop iterations, for all values of i

= 0 + 1 + 2 + · · ·+ (n− 1)
= n(n−1)

2

So total number of lines executed
= 2 · n(n−1)

2 (lines 6-7) +5n(lines 2-6) +2 (lines 1-2)
= n2 − n + 5n + 2
= n2 + 4n + 2.

1From where do we get this expression? We will derive it as we prove the lemma.

University of Toronto, Department of Computer Science Page 2 of 5

CSC 165 Assignment # 1 — Sample Solutions Fall 2007

Now we make use of Lemma 1 and prove T (n) ∈ Θ
(
n2

)
Let c1 = 1. Then c1 ∈ R+.
Let c2 = 7. Then c2 ∈ R+.
Let B = 1. Then B ∈ N.
Assume n ∈ N.

Assume that n ≥ B.
Then c1n

2 = n2 ≤ n2 + 4n + 2 = T (n) by Lemma 1.
Also, since n ≥ 1, T (n) = n2 + 4n + 2 ≤ n2 + 4n2 + 2n2 = 7n2 = c2n

2.
Thus c1n

2 ≤ T (n) ≤ c2n
2.

So n ≥ B ⇒ c1n
2 ≤ T (n) ≤ c2n

2.
Since n is arbitrary, ∀n ∈ N, n ≥ B ⇒ c1n

2 ≤ T (n) ≤ c2n
2.

Thus ∃B ∈ N,∀n ∈ N, n ≥ B ⇒ c1n
2 ≤ T (n) ≤ c2n

2.
Thus ∃c2 ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ c1n

2 ≤ T (n) ≤ c2n
2.

Thus ∃c1 ∈ R+,∃c2 ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ c1n
2 ≤ T (n) ≤ c2n

2.

Now let’s try the second way instead. We want to show T (n) ∈ Θ(n2) without having to know
an exact expression for T (n).

Let c1 = 1
4 . Then c1 ∈ R+.

Let c2 = 10. Then c2 ∈ R+.
Let B = 2. Then B ∈ N.
Assume n ∈ N.

Assume that n ≥ B.
To show c1n

2 ≤ T (n):
On our array A from 1(a), we count the number of times line 7 is executed. The
algorithm executes the outer for loop body n times, and the if statement is true each
time, so the inner loop is executed every time.
The inner loop body is executed i times for i = 0, . . . , n− 1, so line 7 is executed at
least 0 + 1 + 2 + · · ·+ (n− 1) = n(n−1)

2 times.
Thus T (n) ≥ n(n−1)

2 = n2

2 − n
2 ≥

n2

2 − n2

4 = n2

4 = c1n
2 since n ≥ 2.

To show T (n) ≤ c2n
2:

Now, looking at the algorithm, the outer loop executes no more than n times, and
the inner loop executes no more than n times per iteration of the outer loop (since i
is no more than n).
So the total number of lines executed must be no more than
2n2 (lines 6-7) + 5n (lines 2-6) + 2 (lines 1-2).
Thus T (n) ≤ 2n2 + 5n + 2 ≤ 2n2 + 5n2 + 2n2 = 9n2 ≤ c2n

2.

Hence c1n
2 ≤ T (n) ≤ c2n

2.
So n ≥ B ⇒ c1n

2 ≤ T (n) ≤ c2n
2.

Since n is arbitrary, ∀n ∈ N, n ≥ B ⇒ c1n
2 ≤ T (n) ≤ c2n

2.
Thus ∃B ∈ N,∀n ∈ N, n ≥ B ⇒ c1n

2 ≤ T (n) ≤ c2n
2.

Thus ∃c2 ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ c1n
2 ≤ T (n) ≤ c2n

2.
Thus ∃c1 ∈ R+,∃c2 ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ c1n

2 ≤ T (n) ≤ c2n
2.

3. [15 marks] = 4 + 3 + 2 + 2 + 4 marks each part

(a) Total number of real numbers representable =
number of positive real numbers + number of negative real numbers + 1 (for zero)

University of Toronto, Department of Computer Science Page 3 of 5

CSC 165 Assignment # 1 — Sample Solutions Fall 2007

Finding the number of positive real numbers:
The system is normalized, so for each exponent, the numbers are in the format:
1.b1b2b3b4b5b6, where bi ∈ {0, 1}
Therefore, for each exponent, we have 26 different real numbers.

Total positive real numbers
= number of exponents × number of positive real numbers for each exponent
= 16 x 26 = 24 × 26 = 210 = 1024

Finding the number of negative real numbers:
Same as the number of positive real numbers

So total number of real numbers representable = 210 + 210 + 1 = 211 + 1 = 2049

(b) Largest positive real number = (1.111111× 28)2 = 28 + 27 + 26 + 25 + 24 + 23 + 22 = 508
Smallest positive real number = (1.00000× 2−7)2 = 2−7 = 0.0078125

(c) Overflow will result if a positive real number is greater than the largest positive real number
representable. 509 is one such number.

(d) Underflow will result if a positive real number is less than the smallest positive real number
representable. 0.001 is one such number.

(e) The neighbouring numbers in the system are:
l = (1.100100× 22)2 and u = (1.100110× 22)2

The range of real numbers that are approximated by x′ must lie between l and u. The range
must also not include any real number that is within (0.0000001× 22)2 from u and l (otherwise
to represent that number, we would round to nearest and get u or l, not x′).
So the range lies between
l + (0.0000001× 22)2 = 6.28125, inclusive
and
u− (0.0000001× 22)2 = 6.34375, exclusive.
In other words, [6.28125, 6.34375).

4. [9 marks] = 2 + 2 + 2 + 3 each part

(a) We note that we can represent x exactly as 2.04×100. Now, to compute the expression, we first
need to compute the expression 1 − x, multiply it by itself, then subtract from 1, representing
each answer in the floating point system.

1− x = 1.00× 100 − 2.04× 100 ≈ −1.04× 100

(1− x)2 = (−1.04× 100)(−1.04× 100) = 1.0816 ≈ 1.08× 100

1− (1− x)2 ≈ 1.00× 100 − 1.08× 100 = −0.08 = −8.00× 10−2

(b) To compute 2x − x2, we first determine the value of each term, then compute the difference,
representing each answer in the floating point system.

2x = (2.00)(2.04) = 4.08 = 4.08× 100

x2 = (2.04)(2.04) = 4.1616 ≈ 4.16× 100

2x− x2 ≈ 4.08× 100 − 4.16× 100 = −0.08 = −8.00× 10−2

University of Toronto, Department of Computer Science Page 4 of 5

CSC 165 Assignment # 1 — Sample Solutions Fall 2007

(c) To compute x(2−x), we first determine the value of 2−x, then compute the product, representing
each answer in the floating point system.

2− x = 2.00− 2.04 = −0.04 = −4.00× 10−2

x(2− x) ≈ (2.04)(−4.00× 10−2) = −0.0816 ≈ −8.16× 10−2

(d) We note that the exact value of the expression is −0.0816 = −8.16× 10−2.
The relative error for the value computed in parts (a) and (b) is:
|−0.0816−−0.08|

|−0.0816| ≈ 0.0196 ≈ 2%

The relative error for the value computed in parts (a) and (b) is:
|−0.0816−−0.0816|

|−0.0816| = 0

The evaluation in part (c) gives a smaller relative error, and so the formula in part (c) is more
stable for this value of x.

University of Toronto, Department of Computer Science Page 5 of 5

