1. [13 marks]

or

(a) [2 marks] We can state "n is either even or odd" symbolically as $(\exists k \in \mathbb{Z}, n = 2k) \lor (\exists k \in \mathbb{Z}, n = 2k + 1)$

 $\exists k \in \mathbb{Z}, (n = 2k \lor n = 2k + 1).$

Notice that n is open in this sentence.

(b) [5 marks] We want to prove that $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 - n = 2k$. We'll prove by cases. Assume $n \in \mathbb{Z}$.

Then $n \in \mathbb{Z}$. Then n is either even or odd. That is, $(\exists k \in \mathbb{Z}, n = 2k) \lor (\exists k \in \mathbb{Z}, n = 2k + 1)$ (by part (a)). Case 1: Assume $(\exists k \in \mathbb{Z}, n = 2k)$. Consider $k_0 \in \mathbb{Z}$ such that $n = 2k_0$ (by $\exists E$). Then $n^2 - n = (2k_0)^2 - 2k_0 = 2(2k_0^2 - k_0)$. Let $k = 2k_0^2 - k_0$. Then $k \in \mathbb{Z}$ (by closure of \mathbb{Z} under $+, \times$). So $\exists k \in \mathbb{Z}, n^2 - n = 2k$ (by $\exists I$). Case 2: Assume $(\exists k \in \mathbb{Z}, n = 2k + 1)$. Consider $k_1 \in \mathbb{Z}$ such that $n = 2k_1 + 1$ (by $\exists E$). Then $n^2 - n = (2k_1 + 1)^2 - (2k_1 + 1) = 4k_1^2 + 4k_1 + 1 - 2k_1 - 1 = 2(2k_1^2 - k_1)$. Let $k = 2k_1^2 - k_1$. Then $k \in \mathbb{Z}$ (by closure of \mathbb{Z} under $+, \times$). So $\exists k \in \mathbb{Z}, n^2 - n = 2k$ (by $\exists I$). Thus $\exists k \in \mathbb{Z}, n^2 - n = 2k$ (since we concluded it in all cases).

Since n was an arbitrary element of \mathbb{Z} , $\forall n \in \mathbb{Z}$, $\exists k \in \mathbb{Z}$, $n^2 - n = 2k$ (by $\forall I$).

Marking scheme for proofs (5 marks):

- 2 marks: general appropriateness and clarity of the proof structure
- 2 marks: overall content/correctness of the argument
- 1 mark: any necessary justification of steps is provided
- (c) [6 marks] First we need to think about what we need to prove, and how to write it symbolically in a way we know we can prove it. We could write this statement symbolically as $\forall n \in \mathbb{Z}, \frac{n(n+1)}{2} \in \mathbb{Z}$

or

$$\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, \frac{n(n+1)}{2} = k.$$

The actual proof structure for these two alternatives is quite similar. We'll prove the latter statement.

Assume $n \in \mathbb{Z}$. Then *n* is either even or odd. That is, $(\exists k \in \mathbb{Z}, n = 2k) \lor (\exists k \in \mathbb{Z}, n = 2k + 1)$ (by part (a)). Case 1: Assume $(\exists k \in \mathbb{Z}, n = 2k)$. Consider $k_0 \in \mathbb{Z}$ such that $n = 2k_0$ (by $\exists E$). Then $\frac{n(n+1)}{2} = \frac{2k_0(n+1)}{2} = k_0(n+1)$. Let $k = k_0(n+1)$. Then $k \in \mathbb{Z}$ (by closure of \mathbb{Z} under $+, \times$). So $\exists k \in \mathbb{Z}, \frac{n(n+1)}{2} = 2k$ (by $\exists I$). Case 2: Assume $(\exists k \in \mathbb{Z}, n = 2k + 1)$.

University of Toronto, Department of Computer Science

Consider $k_1 \in \mathbb{Z}$ such that $n = 2k_1 + 1$ (by $\exists E$). Then $\frac{n(n+1)}{2} = \frac{n(2k_1+1+1)}{2} = \frac{2n(k_1+1)}{2} = n(k_1+1)$. Let $k = n(k_1+1)$. Then $k \in \mathbb{Z}$ (by closure of \mathbb{Z} under $+, \times$). So $\exists k \in \mathbb{Z}, \frac{n(n+1)}{2} = 2k$ (by $\exists I$). Thus $\exists k \in \mathbb{Z}, \frac{n(n+1)}{2} = 2k$ (since we concluded it in all cases). Since n was an arbitrary element of $\mathbb{Z}, \forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, \frac{n(n+1)}{2} = 2k$ (by $\forall I$).

2. [17 marks]

(a) [6 marks] The statement is false. We'll disprove it by proving the negation. The negation is $\exists i \in \mathbb{N}, ((a_i > a_{i+1}) \lor (a_{i+1} > a_{i+2})) \land ((a_i < a_{i+1}) \lor (a_{i+1} < a_{i+2}))$. The proof is as follows. Let i = 2. Then $i \in \mathbb{N}$. Then $a_2 = 1, a_3 = 0, a_4 = 1$ ((by definition of (A))). Then $(a_2 > a_3)$ and $(a_3 < a_4)$. Then $(a_2 > a_3) \lor (a_3 > a_4)$ and $(a_2 < a_3) \lor (a_3 < a_4)$ ((by \lor I)). Thus $((a_2 > a_3) \lor (a_3 > a_4)) \land ((a_2 < a_3) \lor (a_3 < a_4))$ ((by \land I)). Thus $\exists i \in \mathbb{N}, ((a_i > a_{i+1}) \lor (a_{i+1} > a_{i+2})) \land ((a_i < a_{i+1}) \lor (a_{i+1} < a_{i+2})) ((by \exists I)).$ (b) [5 marks] The statement is true. Assume $i \in \mathbb{N}$. Then $a_i \leq 1$. And $a_{i+2} \leq 1$. Also $a_{i+4} \leq 1$. So $a_i + a_{i+2} + a_{i+4} \le 3 \le 4$. Thus $\forall i \in \mathbb{N}, a_i + a_{i+2} + a_{i+4} \leq 4$. ((by $\forall I$)) (c) [6 marks] The statement is true. Let i = 2. Then $i \in \mathbb{N}$. Assume $j \in \mathbb{N}$. Assume $k \in \mathbb{N}$. Assume j = 3k. Then $a_i = a_{3k}$. Also, k is a multiple of $2 \lor k$ is one more than a multiple of $4 \lor k$ is three more than a multiple of 4. That is, $(\exists m \in \mathbb{N}, k = 2m) \lor (\exists m \in \mathbb{N}, k = 4m + 1) \lor (\exists m \in \mathbb{N}, k = 4m + 3).$ Case 1: Assume $(\exists m \in \mathbb{N}, k = 2m)$. Consider $m \in \mathbb{N}$ such that k = 2m. ((by $\exists E$)) Then $a_{3k} = a_{2 \cdot 3m} = 1$. And i + k = 2 + 2m = 2(m + 1), so $a_{i+k} = 1 = a_i$. Case 2: Assume $(\exists m \in \mathbb{N}, k = 4m + 1)$. Consider $m \in \mathbb{N}$ such that k = 4m + 1. ((by $\exists E$)) Then 3k = 3(4m + 1) = 4(3m) + 3, so $a_{3k} = 0$. And i + k = 2 + 4m + 1 = 4m + 3, so $a_{i+k} = 0 = a_i$. Case 3: Assume $(\exists m \in \mathbb{N}, k = 4m + 3)$. Consider $m \in \mathbb{N}$ such that k = 4m + 3. ((by $\exists E$)) Then 3k = 3(4m + 3) = 4(3m) + 9 = 4(3m + 2) + 1, so $a_{3k} = 1$.

```
And i + k = 2 + 4m + 3 = 4(m + 1) + 1, so a_{i+k} = 1 = a_j.

Thus a_j = a_{i+k}. ((since it was concluded in each case))

So (j = 3k) \Rightarrow (a_j = a_{i+k}). ((by \RightarrowI))

So \forall k \in \mathbb{N}, (j = 3k) \Rightarrow (a_j = a_{i+k}). ((by \forallI))

So \forall j \in \mathbb{N}, \forall k \in \mathbb{N}, (j = 3k) \Rightarrow (a_j = a_{i+k}). ((by \forallI))

Thus \exists i \in \mathbb{N}, \forall j \in \mathbb{N}, \forall k \in \mathbb{N}, (j = 3k) \Rightarrow (a_j = a_{i+k}). ((by \existsI))
```

- 3. [20 marks]
 - (a) [8 marks] First we need to define our domains. Let I be the set of individuals (people), let P be the set of political parties, and let S be the set of subjects. Then:
 - (S1) $\forall x \in I, \forall y \in I, \forall p \in P, (x \neq y \land S(x, p) \land S(y, p)) \Rightarrow V(x, y)$ (S2) $\forall x \in I, \forall y \in I, V(x, y) \Rightarrow \exists s \in S, \neg A(x, y, s)$
 - (S3) $\exists x \in I, \exists y \in I, x \neq y \land \forall s \in S, A(x, y, s)$
 - (b) (i). [6 marks] "There is no party supported by all citizens." $\neg \exists p \in P, \forall x \in I, S(x, p).$

We will prove this statement by contradiction:

Assume (for contradiction) that $\exists p \in P, \forall x \in I, S(x, p)$. Consider $p \in P$ such that $\forall x \in I, S(x, p)$ ((by $\exists E$)). Consider $x, y \in I$ such that $x \neq y \land \forall s \in S, A(x, y, s)$ ((by $\exists E$ on (S3))). Then $x \neq y$ and $\forall s \in S, A(x, y, s)$ ((by $\land E$)). So S(x, p) and S(y, p) ((by $\exists E$, line 2 and $x, y \in I$)). Thus $x \neq y \land S(x, p) \land S(y, p)$ ((by $\land I$)). But $(x \neq y \land S(x, p) \land S(y, p)) \Rightarrow V(x, y)$ ((by $\forall E$ on (S1))). So V(x, y) ((by $\Rightarrow E$)). Now $V(x, y) \Rightarrow \exists s \in S, \neg A(x, y, s)$ ((by $\forall E$ on (S2))). So $\exists s \in S, \neg A(x, y, s)$ ((by $\Rightarrow E$)). We may rewrite this as $\neg \forall s \in S, A(x, y, s)$. But on line 4 we knew $\forall s \in S, A(x, y, s)$. Hence we have reached a contradiction! Thus $\neg \exists p \in P, \forall x \in I, S(x, p)$ ((by $\neg I$)).

(ii). [6 marks] "If there is a party with a supporter, then there are at least two people." $(\exists p \in P, \exists x \in I, S(x, p)) \Rightarrow (\exists x \in I, \exists y \in I, x \neq y).$

The way we wrote (S3) makes this trivially easy:

Assume $\exists p \in P, \exists x \in I, S(x, p)$. Consider $x, y \in I$ such that $x \neq y \land \forall s \in S, A(x, y, s)$ ((by $\exists E$ on (S3))). Then $x \neq y$ ((by $\land E$)). So $\exists x \in I, \exists y \in I, x \neq y$ ((by $\exists I$)). Thus $(\exists p \in P, \exists x \in I, S(x, p)) \Rightarrow (\exists x \in I, \exists y \in I, x \neq y)$ ((by $\Rightarrow I$)).