
CSC 165 Assignment # 1 — Sample Solutions Fall 2007

1. [13 marks]

(a) [2 marks] We can state “n is either even or odd” symbolically as
(∃k ∈ Z, n = 2k) ∨ (∃k ∈ Z, n = 2k + 1)
or
∃k ∈ Z, (n = 2k ∨ n = 2k + 1).
Notice that n is open in this sentence.

(b) [5 marks] We want to prove that ∀n ∈ Z,∃k ∈ Z, n2 − n = 2k. We’ll prove by cases.
Assume n ∈ Z.

Then n is either even or odd.
That is, (∃k ∈ Z, n = 2k) ∨ (∃k ∈ Z, n = 2k + 1) (by part (a)).
Case 1: Assume (∃k ∈ Z, n = 2k).

Consider k0 ∈ Z such that n = 2k0 (by ∃E).
Then n2 − n = (2k0)2 − 2k0 = 2(2k0

2 − k0).
Let k = 2k0

2 − k0.
Then k ∈ Z (by closure of Z under +,×).
So ∃k ∈ Z, n2 − n = 2k (by ∃I).

Case 2: Assume (∃k ∈ Z, n = 2k + 1).
Consider k1 ∈ Z such that n = 2k1 + 1 (by ∃E).
Then n2 − n = (2k1 + 1)2 − (2k1 + 1) = 4k1

2 + 4k1 + 1− 2k1 − 1 = 2(2k1
2 − k1).

Let k = 2k1
2 − k1.

Then k ∈ Z (by closure of Z under +,×).
So ∃k ∈ Z, n2 − n = 2k (by ∃I).

Thus ∃k ∈ Z, n2 − n = 2k (since we concluded it in all cases).
Since n was an arbitrary element of Z, ∀n ∈ Z,∃k ∈ Z, n2 − n = 2k (by ∀I).

Marking scheme for proofs (5 marks):

• 2 marks: general appropriateness and clarity of the proof structure
• 2 marks: overall content/correctness of the argument
• 1 mark: any necessary justification of steps is provided

(c) [6 marks] First we need to think about what we need to prove, and how to write it symbolically
in a way we know we can prove it. We could write this statement symbolically as
∀n ∈ Z, n(n+1)

2 ∈ Z
or
∀n ∈ Z,∃k ∈ Z, n(n+1)

2 = k.
The actual proof structure for these two alternatives is quite similar. We’ll prove the latter
statement.

Assume n ∈ Z.
Then n is either even or odd.
That is, (∃k ∈ Z, n = 2k) ∨ (∃k ∈ Z, n = 2k + 1) (by part (a)).
Case 1: Assume (∃k ∈ Z, n = 2k).

Consider k0 ∈ Z such that n = 2k0 (by ∃E).
Then n(n+1)

2 = 2k0(n+1)
2 = k0(n + 1).

Let k = k0(n + 1).
Then k ∈ Z (by closure of Z under +,×).
So ∃k ∈ Z, n(n+1)

2 = 2k (by ∃I).
Case 2: Assume (∃k ∈ Z, n = 2k + 1).
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Consider k1 ∈ Z such that n = 2k1 + 1 (by ∃E).
Then n(n+1)

2 = n(2k1+1+1)
2 = 2n(k1+1)

2 = n(k1 + 1).
Let k = n(k1 + 1).
Then k ∈ Z (by closure of Z under +,×).
So ∃k ∈ Z, n(n+1)

2 = 2k (by ∃I).
Thus ∃k ∈ Z, n(n+1)

2 = 2k (since we concluded it in all cases).
Since n was an arbitrary element of Z, ∀n ∈ Z,∃k ∈ Z, n(n+1)

2 = 2k (by ∀I).

2. [17 marks]

(a) [6 marks] The statement is false. We’ll disprove it by proving the negation.
The negation is ∃i ∈ N, ((ai > ai+1) ∨ (ai+1 > ai+2)) ∧ ((ai < ai+1) ∨ (ai+1 < ai+2)). The proof
is as follows.

Let i = 2. Then i ∈ N.
Then a2 = 1, a3 = 0, a4 = 1 ((by definition of (A))).
Then (a2 > a3) and (a3 < a4).
Then (a2 > a3) ∨ (a3 > a4) and (a2 < a3) ∨ (a3 < a4) ((by ∨I)).
Thus ((a2 > a3) ∨ (a3 > a4)) ∧ ((a2 < a3) ∨ (a3 < a4)) ((by ∧I)).
Thus ∃i ∈ N, ((ai > ai+1) ∨ (ai+1 > ai+2)) ∧ ((ai < ai+1) ∨ (ai+1 < ai+2)) ((by ∃I)).

(b) [5 marks] The statement is true.
Assume i ∈ N.

Then ai ≤ 1.
And ai+2 ≤ 1.
Also ai+4 ≤ 1.
So ai + ai+2 + ai+4 ≤ 3 ≤ 4.

Thus ∀i ∈ N, ai + ai+2 + ai+4 ≤ 4. ((by ∀I))
(c) [6 marks] The statement is true.

Let i = 2.
Then i ∈ N.
Assume j ∈ N.

Assume k ∈ N.
Assume j = 3k.

Then aj = a3k.
Also, k is a multiple of 2 ∨ k is one more than a multiple of 4 ∨ k is three more
than a multiple of 4.
That is, (∃m ∈ N, k = 2m) ∨ (∃m ∈ N, k = 4m + 1) ∨ (∃m ∈ N, k = 4m + 3).
Case 1: Assume (∃m ∈ N, k = 2m).

Consider m ∈ N such that k = 2m. ((by ∃E))
Then a3k = a2·3m = 1.
And i + k = 2 + 2m = 2(m + 1), so ai+k = 1 = aj .

Case 2: Assume (∃m ∈ N, k = 4m + 1).
Consider m ∈ N such that k = 4m + 1. ((by ∃E))
Then 3k = 3(4m + 1) = 4(3m) + 3, so a3k = 0.
And i + k = 2 + 4m + 1 = 4m + 3, so ai+k = 0 = aj .

Case 3: Assume (∃m ∈ N, k = 4m + 3).
Consider m ∈ N such that k = 4m + 3. ((by ∃E))
Then 3k = 3(4m + 3) = 4(3m) + 9 = 4(3m + 2) + 1, so a3k = 1.

University of Toronto, Department of Computer Science Page 2 of 3



CSC 165 Assignment # 1 — Sample Solutions Fall 2007

And i + k = 2 + 4m + 3 = 4(m + 1) + 1, so ai+k = 1 = aj .
Thus aj = ai+k. ((since it was concluded in each case))

So (j = 3k) ⇒ (aj = ai+k). ((by ⇒I))
So ∀k ∈ N, (j = 3k) ⇒ (aj = ai+k). ((by ∀I))

So ∀j ∈ N,∀k ∈ N, (j = 3k) ⇒ (aj = ai+k). ((by ∀I))
Thus ∃i ∈ N,∀j ∈ N,∀k ∈ N, (j = 3k) ⇒ (aj = ai+k). ((by ∃I))

3. [20 marks]

(a) [8 marks] First we need to define our domains. Let I be the set of individuals (people), let P
be the set of political parties, and let S be the set of subjects. Then:

(S1) ∀x ∈ I,∀y ∈ I,∀p ∈ P, (x 6= y ∧ S(x, p) ∧ S(y, p)) ⇒ V (x, y)

(S2) ∀x ∈ I,∀y ∈ I, V (x, y) ⇒ ∃s ∈ S,¬A(x, y, s)

(S3) ∃x ∈ I,∃y ∈ I, x 6= y ∧ ∀s ∈ S, A(x, y, s)

(b) (i). [6 marks] “There is no party supported by all citizens.”
¬∃p ∈ P,∀x ∈ I, S(x, p).
We will prove this statement by contradiction:

Assume (for contradiction) that ∃p ∈ P,∀x ∈ I, S(x, p).
Consider p ∈ P such that ∀x ∈ I, S(x, p) ((by ∃E)).
Consider x, y ∈ I such that x 6= y ∧ ∀s ∈ S, A(x, y, s) ((by ∃E on (S3))).
Then x 6= y and ∀s ∈ S, A(x, y, s) ((by ∧E)).
So S(x, p) and S(y, p) ((by ∃E, line 2 and x, y ∈ I)).
Thus x 6= y ∧ S(x, p) ∧ S(y, p) ((by ∧I)).
But (x 6= y ∧ S(x, p) ∧ S(y, p)) ⇒ V (x, y) ((by ∀E on (S1))).
So V (x, y) ((by ⇒E)).
Now V (x, y) ⇒ ∃s ∈ S,¬A(x, y, s) ((by ∀E on (S2))).
So ∃s ∈ S,¬A(x, y, s) ((by ⇒E)).
We may rewrite this as ¬∀s ∈ S, A(x, y, s).
But on line 4 we knew ∀s ∈ S, A(x, y, s).
Hence we have reached a contradiction!

Thus ¬∃p ∈ P,∀x ∈ I, S(x, p) ((by ¬I)).

(ii). [6 marks] “If there is a party with a supporter, then there are at least two people.”
(∃p ∈ P,∃x ∈ I, S(x, p)) ⇒ (∃x ∈ I,∃y ∈ I, x 6= y).
The way we wrote (S3) makes this trivially easy:

Assume ∃p ∈ P,∃x ∈ I, S(x, p).
Consider x, y ∈ I such that x 6= y ∧ ∀s ∈ S, A(x, y, s) ((by ∃E on (S3))).
Then x 6= y ((by ∧E)).
So ∃x ∈ I,∃y ∈ I, x 6= y ((by ∃I)).

Thus (∃p ∈ P,∃x ∈ I, S(x, p)) ⇒ (∃x ∈ I,∃y ∈ I, x 6= y) ((by ⇒I)).
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