Solution to the 2018 CSC 336 Exam

1. [10 marks; 2 marks for each part]

For each of the five statements below, the students were asked say whether the statement is true or false and briefly justify their answer.
(a) A good algorithm will produce an accurate solution to a problem regardless of the conditioning of the problem being solved.
False.
If a problem is ill-conditioned, any small rounding that you make in solving the problem might result in a very large change in the computed solution. So, it is very likely that the computed solution will be inaccurate (at least in some cases).
(b) In the IEEE double-precision floating-point number system, machine epsilon, often referred to as $\epsilon_{\text {mach }}$ in your textbook, is the smallest positive floating-point number. That is, there are no double-precision floating-point numbers between $\epsilon_{\text {mach }}$ and zero.
False.
The definition of machine epsilon that I gave them in class is that it is the distance from 1 to the next larger machine number. This is very different from the smallest positive floating-point number.
(c) A well-conditioned matrix can have a very small determinant. That is, an $n \times n$ matrix A can have cond (A) not too large (for example, $1 \leq \operatorname{cond}(A) \leq 10$), but $\operatorname{det}(A)$ very close to 0 (i.e., $0<\operatorname{det}(A) \ll 1$).
True.
An example of a matrix A with $\operatorname{cond}(A)$ not too large but $\operatorname{det}(A)$ very close to 0 (i.e., $0<\operatorname{det}(A) \ll 1$) is

$$
A=\left(\begin{array}{ll}
\epsilon & 0 \\
0 & \epsilon
\end{array}\right)
$$

where $0<\epsilon \ll 1$. In this case,

$$
\begin{aligned}
\operatorname{cond}_{\infty}(A) & =\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty} \\
& =\epsilon \frac{1}{\epsilon} \\
& =1
\end{aligned}
$$

but

$$
\operatorname{det}(A)=\epsilon^{2}
$$

So, $\operatorname{cond}_{\infty}(A)=1$ but $0<\operatorname{det}(A)=\epsilon^{2} \ll 1$.
(d) If an iterative method for solving a nonlinear equation gains more than one bit of accuracy per iteration, then it is said to have a superlinear rate of convergence.
False.
A linearly convergent iterative method can gain more than 1 bit of accuracy per iteration. To see this, recall that a linearly convergent iterative method satisfies

$$
\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}-x^{*}\right|}{\left|x_{n}-x^{*}\right|}=C
$$

for some $C<1$, where x^{*} is the root. If $C<1 / 2$, then this iterative method will gain more than one bit of accuracy per iteration (at least for n sufficiently large).
(e) Suppose you are given N data points, $\left(t_{1}, y_{1}\right),\left(t_{2}, y_{2}\right), \ldots,\left(t_{N}, y_{N}\right)$, where

- N is a positive integer,
- each $t_{n} \in \mathbb{R}$ and each $y_{n} \in \mathbb{R}$, for $n=1,2, \ldots, N$, and
- $t_{1}<t_{2}<\cdots<t_{N}$.

Then there are infinitely many polynomials of degree N that interpolate the data points $\left(t_{1}, y_{1}\right),\left(t_{2}, y_{2}\right), \ldots\left(t_{N}, y_{N}\right)$.
True.
I showed them in class that there is a unique polynomial $p_{N}(t)$ of degree $N-1$ or less that interpolates the data:

$$
p_{N}\left(t_{i}\right)=y_{i} \quad \text { for } i=1,2, \ldots, N
$$

Now, for any $c \in \mathbb{R}$, let

$$
p_{N, c}(t)=p_{N}(t)+c\left(t-t_{1}\right) \cdots\left(t-t_{N}\right)
$$

Note that, for any $c \neq 0, p_{N, c}(t)$ is a polynomial of degree N and

$$
p_{N, c}\left(t_{i}\right)=y_{i} \quad \text { for } i=1,2, \ldots, N
$$

So, for any $c \neq 0, p_{N, c}(t)$ is a polynomial of degree N that interpolates the data. Since there are infinitely many nonzero $c \in \mathbb{R}$ and each of them gives rise to a different polynomial $p_{N, c}(t)$ (i.e., $p_{N, c_{1}}(t) \neq p_{N, c_{2}}(t)$ if $c_{1} \neq c_{2}$), there are infinitely many polynomials of degree N that interpolate the data points $\left(t_{1}, y_{1}\right),\left(t_{2}, y_{2}\right), \ldots\left(t_{N}, y_{N}\right)$.
2. [10 marks: 5 marks for each part]

I told the students that the function

$$
f(x)=\frac{\mathrm{e}^{x}-1}{x}
$$

satisfies

$$
\begin{equation*}
\lim _{x \rightarrow 0} f(x)=1 \tag{1}
\end{equation*}
$$

I also told them that they don't have to prove (1); just accept it as true.
I also gave them a table on page 4 of the exam that shows the computed values of $f(x)$ for $x=10^{-k}$ and $k=1,2, \ldots, 15$.
(a) I noted that the computed values for $f(x)$ first seem to be converging to 1 for $k=1,2, \ldots, 8$, but then diverge from 1 for $k=11,12, \ldots, 15$. I asked them to explain why this happens.
The students should do a little rounding error analysis to explain why the computed values for $f(x)$ in the table behave the way they do. To this end, I told them that they can assume

$$
\exp (x)=\mathrm{e}^{x}\left(1+\delta_{x}\right)
$$

where δ_{x} changes with x, but its magnitude is at most a few multiples of $\epsilon_{\text {mach }}$. (I.e., $\left|\delta_{x}\right| \leq c \epsilon_{\text {mach }}$ for some c that is at most 2 or 3.)

Therefore,

$$
\begin{align*}
\mathrm{fl}(f(x)) & =\mathrm{fl}\left(\frac{\mathrm{e}^{x}-1}{x}\right) \tag{2}\\
& =\frac{\left(\mathrm{e}^{x}\left(1+\delta_{x}\right)-1\right)\left(1+\delta_{1}\right)}{x}\left(1+\delta_{2}\right)
\end{align*}
$$

for some δ_{1} and δ_{2} satisfying $\left|\delta_{1}\right| \leq \frac{1}{2} \epsilon_{\text {mach }}$ and $\left|\delta_{2}\right| \leq \frac{1}{2} \epsilon_{\text {mach }}$. Now we can perform standard mathematical operations on the last line of (2) to get

$$
\begin{align*}
\mathrm{fl}(f(x)) & =\frac{\mathrm{e}^{x}-1+\mathrm{e}^{x} \delta_{x}}{x}\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \\
& =\left(\frac{\mathrm{e}^{x}-1}{x}+\frac{\delta_{x}}{x} \mathrm{e}^{x}\right)\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \\
& =\left(\left(1+\frac{1}{2} x+\mathcal{O}\left(x^{2}\right)\right)+\left(\frac{\delta_{x}}{x} \mathrm{e}^{x}\right)\right)\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \tag{3}\\
& =\left(1+\left(\frac{1}{2} x+\mathcal{O}\left(x^{2}\right)\right)+\left(\frac{\delta_{x}}{x} \mathrm{e}^{x}\right)\right)\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)
\end{align*}
$$

Page 3 of 18 pages.

From our assumption above, $\left|\delta_{x}\right| \leq c \epsilon_{\text {mach }} \lesssim 10^{-15}$. So, for $k=1,2, \ldots, 6$ and $x=10^{-k}$,

$$
\left|\frac{\delta_{x}}{x}\right| \ll \frac{1}{2} x+\mathcal{O}\left(x^{2}\right)
$$

Hence, from the last line of (3),

$$
\mathrm{f}(f(x)) \approx 1+\frac{1}{2} x+\mathcal{O}\left(x^{2}\right)
$$

That is, our rounding error analysis predicts that the computed value of $f(x)$ will behave like $1+\frac{1}{2} x+\mathcal{O}\left(x^{2}\right)$ for $k=1,2, \ldots, 6$. We see quite clearly in the table on page 4 of the exam that this is indeed the case.
For the values of k in the range $k=7,8, \ldots, 11$, the behaviour of $f(x)$ is not as clear. That's because, for the k in this range,

$$
\left|\frac{\delta_{x}}{x}\right| \approx \frac{1}{2} x+\mathcal{O}\left(x^{2}\right)
$$

Hence, from the last line of (3), we see that both

$$
\frac{1}{2} x+\mathcal{O}\left(x^{2}\right)
$$

and

$$
\frac{\delta_{x}}{x}
$$

affect the behaviour of $f(x)$. So, our rounding error analysis predicts that the behaviour of $f(x)$ is not particularly clear in this range. This prediction is supported by the data in the table on page 4 of the exam.
However, for $k=12,13,14,15$,

$$
0<\frac{1}{2} x+\mathcal{O}\left(x^{2}\right) \ll\left|\frac{\delta_{x}}{x}\right|
$$

So, for this range of k, our rounding error analysis predicts that

$$
\mathrm{f}(f(x)) \approx 1+\frac{\delta_{x}}{x}
$$

Since the δ_{x} is somewhat "random" in the range $\left[-c \epsilon_{\text {mach }}, c \epsilon_{\text {mach }}\right]$, the values of $f(x)$ for k in this range are somewhat erratic, but $\left|\delta_{x} / x\right|$ generally grows at x decreases (e.g., k increases). Hence, $f(x)$ diverges from 1 (in a somewhat erratic way) as k increases for k in this range. This prediction is supported by the data in the table on page 4 of the exam.
(b) The students are asked to explain why the computed values for

$$
g(x)=\frac{\mathrm{e}^{x}-1}{\ln \left(\mathrm{e}^{x}\right)}
$$

shown in column four of the table on page 3 of the exam (see the file exam.2018.pdf) give much more accurate results for small x than $f(x)$ does, even though in exact arithmetic $f(x)=g(x)$ for all $x \in \mathbb{R}$ (assuming you define $f(0)=g(0)=1$).
To see how rounding errors affect $g(x)$, we first need to see how rounding errors affect $\ln (u)$ for u close to 1 . It's reasonable to assume that

$$
\begin{equation*}
\mathrm{f}(\ln (u))=\ln (u)\left(1+\delta_{u}\right) \tag{4}
\end{equation*}
$$

However, $\left|\delta_{u}\right|$ might be much larger than $\epsilon_{\text {mach }}$, $\operatorname{since} \ln (u)$ is ill-conditioned for u close to 1 . (Note, we are assuming here that $u=\mathrm{e}^{x}$ and $|x|$ is small, so $u \approx 1$.) For now, let's not try to determine a bound on $\left|\delta_{u}\right|$. We will come back to that later. So, using (4), we can perform a rounding error analysis on $g(x)$ that is much like the one in part (a) for $f(x)$. That is,

$$
\begin{align*}
\mathrm{fl}(g(x)) & =\mathrm{fl}\left(\frac{\mathrm{e}^{x}-1}{\ln \left(\mathrm{e}^{x}\right)}\right) \\
& =\frac{\left(\mathrm{e}^{x}\left(1+\delta_{x}\right)-1\right)\left(1+\delta_{1}\right)}{\left(\ln \left(\mathrm{e}^{x}\left(1+\delta_{x}\right)\right)\right)\left(1+\delta_{u}\right)}\left(1+\delta_{2}\right) \tag{5}
\end{align*}
$$

for some δ_{1} and δ_{2} satisfying $\left|\delta_{1}\right| \leq \frac{1}{2} \epsilon_{\text {mach }}$ and $\left|\delta_{2}\right| \leq \frac{1}{2} \epsilon_{\text {mach }}$. It's important to note that the rounding error that is made when computing e^{x} is the same for the e^{x} in the numerator of (5) and the e^{x} in the denominator of (5). More generally, the rounding error that is made when computing e^{x} is deterministic. So, the rounding error is the same whenever e^{x} computed for the same value of x. Therefore, the δ_{x} in the numerator of (5) is the same as the δ_{x} in the denominator of (5). This is very important for the analysis below.
For the analysis that follows, it is convenient to note that there is a $\hat{\delta}_{x}$ such that

$$
\begin{equation*}
\mathrm{e}^{x+\hat{\delta}_{x}}=\mathrm{e}^{x}\left(1+\delta_{x}\right) \tag{6}
\end{equation*}
$$

where by taking logarithms of both sides of (6), we see that

$$
x+\hat{\delta}_{x}=x+\ln \left(1+\delta_{x}\right)
$$

whence

$$
\hat{\delta}_{x}=\ln \left(1+\delta_{x}\right)=\delta_{x}+\mathcal{O}\left(\delta_{x}^{2}\right)
$$

Since we assumed in part (a) that $\left|\delta_{x}\right| \leq c \epsilon_{\text {mach }}$ for some c that is at most 2 or 3, it follows that $\left|\hat{\delta}_{x}\right| \leq \hat{c} \epsilon_{\text {mach }}$ for some \hat{c} that is only slightly different from c. That is, we can also assume \hat{c} is at most 2 or 3 .

Page 5 of 18 pages.

Therefore, we can rewrite (5) as

$$
\begin{align*}
\mathrm{f}(g(x)) & =\frac{\left(\mathrm{e}^{x+\hat{\delta}_{x}}-1\right)\left(1+\delta_{1}\right)}{\left(\ln \left(\mathrm{e}^{x+\hat{\delta}_{x}}\right)\right)\left(1+\delta_{u}\right)}\left(1+\delta_{2}\right) \\
& =\frac{\mathrm{e}^{x+\hat{\delta}_{x}}-1}{\ln \left(\mathrm{e}^{x+\hat{\delta}_{x}}\right)} \times \frac{\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)}{\left(1+\delta_{u}\right)} \\
& =\frac{\left(x+\hat{\delta}_{x}\right)+\frac{1}{2}\left(x+\hat{\delta}_{x}\right)^{2}+\mathcal{O}\left(\left(x+\hat{\delta}_{x}\right)^{3}\right)}{\left(x+\hat{\delta}_{x}\right)} \times \frac{\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)}{\left(1+\delta_{u}\right)} \tag{7}\\
& =\left(1+\frac{1}{2}\left(x+\hat{\delta}_{x}\right)+\mathcal{O}\left(\left(x+\hat{\delta}_{x}\right)^{2}\right) \times \frac{\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)}{\left(1+\delta_{u}\right)}\right.
\end{align*}
$$

For $k=1,2, \ldots, 13$ and $x=10^{-k}$,

$$
\left|\hat{\delta}_{x}\right| \ll x
$$

So,

$$
\begin{equation*}
\left(1+\frac{1}{2}\left(x+\hat{\delta}_{x}\right)+\mathcal{O}\left(\left(x+\hat{\delta}_{x}\right)^{2}\right) \approx 1+\frac{1}{2} x\right. \tag{8}
\end{equation*}
$$

which agrees very well with the numerical results shown in the table on page 4 of the exam. A slightly surprising thing is that the term

$$
\frac{\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)}{\left(1+\delta_{u}\right)}
$$

on the right in (7) does not disturb the result (8). Although the δ_{1} and δ_{2} terms would not disturb the result (8), since $\left|\delta_{1}\right| \leq \frac{1}{2} \epsilon_{\text {mach }}$ and $\left|\delta_{2}\right| \leq \frac{1}{2} \epsilon_{\text {mach }}$, I would have expected that the δ_{u} term could disturb the result (8), since I think we could have $\left|\delta_{u}\right| \gg \epsilon_{\text {mach }}$. However, the results in the table on page 4 of the exam do not suffer from this potentially large perturbation.
Also, for $k=14,15$, you might expect that

$$
\left|\hat{\delta}_{x}\right| \nless x
$$

This could also perturb the result (8). However, this potential perturbation does not appear to occur in the numerical results reported in the table on page 4 of the exam.
3. [15 marks: 2 marks for each of parts (a) and (c); 3 marks for each of parts (b) and (e); 5 marks for part (d)]
(a) $[2$ marks]

I asked the student to show that, if A is an $n \times n$ real symmetric positive-definite matrix, then $A_{i, i}>0$ for all $i=1,2, \ldots, n$.
I gave them the following hint.
Hint: for each $i=1,2, \ldots, n$, choose a particular $\hat{x} \in \mathbb{R}^{n}$ for which $\hat{x} \neq \overrightarrow{0}$ and $A_{i, i}=\hat{x}^{T} A \hat{x}$. Then note that $\hat{x}^{T} A \hat{x}>0$, since $\hat{x} \neq \overrightarrow{0}$ and A is an $n \times n$ real symmetric positive-definite matrix.
What is the required vector \hat{x} ?

The required \hat{x} is $\hat{x}=e_{i}$, where $e_{i} \in \mathbb{R}^{n}$ is the vector with all elements equal to 0 except for the $i^{\text {th }}$ element, which is 1 . (Another way of saying this is that e_{i} is the $i^{\text {th }}$ column of the $n \times n$ identity matrix.) It is very easy to see from this that

$$
\hat{x}^{T} A \hat{x}=e_{i}^{T} A e_{i}=A_{i, i}
$$

In addition, since $e_{i} \neq \overrightarrow{0}$ and A is symmetric positive-definite, we must have $e_{i}^{T} A e_{i}>0$. Therefore, $A_{i, i}=e_{i}^{T} A e_{i}>0$.
[If they don't give the last two sentences above, don't take off any marks, since it is just repeating what is in the hint. Give them the full 2 marks if they say $\hat{x}=e_{i}$.]
(b) [3 marks]

I told the students to let

$$
m_{i, 1}=A_{i, 1} / A_{1,1} \quad \text { for } i=2, \ldots, n
$$

and form the vectors

$$
m_{1}=\left(\begin{array}{c}
0 \\
m_{2,1} \\
m_{3,1}, \\
\vdots \\
m_{n, 1}
\end{array}\right) \quad e_{1}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

and the matrix

$$
M_{1}=I-m_{1} e_{1}^{T}
$$

where I is the $n \times n$ identity matrix.
Then I asked the students to show that

$$
A_{1}=M_{1} A M_{1}^{T}=\left(\begin{array}{ccccc}
A_{1,1} & 0 & 0 & \cdots & 0 \tag{9}\\
0 & \hat{A}_{2,2} & \hat{A}_{2,3} & \cdots & \hat{A}_{2, n} \\
0 & \hat{A}_{3,2} & \hat{A}_{3,3} & \cdots & \hat{A}_{3, n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \hat{A}_{n, 2} & \hat{A}_{n, 3} & \cdots & \hat{A}_{n, n}
\end{array}\right)
$$

where $A_{1,1}$ is the $(1,1)$-element of the original matrix A and the $\hat{A}_{i, j}$, for $i=$ $2, \ldots, n$ and $j=2, \ldots, n$, are modified elements of A computed by multiplying A by M_{1} on the left and by M_{1}^{T} on the right.

To see that (9) holds, first note that $M_{1} A$ is just the matrix that we would get from the first stage of Gaussian elimination. That is,

$$
\hat{A}_{1}=M_{1} A=\left(\begin{array}{ccccc}
A_{1,1} & A_{1,2} & A_{1,3} & \cdots & A_{1, n} \tag{10}\\
0 & \hat{A}_{2,2} & \hat{A}_{2,3} & \cdots & \hat{A}_{2, n} \\
0 & \hat{A}_{3,2} & \hat{A}_{3,3} & \cdots & \hat{A}_{3, n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \hat{A}_{n, 2} & \hat{A}_{n, 3} & \cdots & \hat{A}_{n, n}
\end{array}\right)
$$

where the elements $A_{1, i}$ for $i=1,2, \ldots, n$, in the first row of \hat{A}_{1} are the elements in the first row of A. That is, the first row of A is unchanged by the multiplication $M_{1} A$.
Now, when you compute $\hat{A}_{1} M_{1}^{T}$, this has the effect of multiplying column 1 of \hat{A}_{1} by $m_{i, 1}$ and subtracting it from column i of \hat{A}_{1}, for $i=2, \ldots, n$. So, the $(1, i)$
element of $A_{1}=\hat{A}_{1} M_{1}^{T}$ becomes

$$
\begin{aligned}
A_{1, i}-m_{i, 1} A_{1,1} & =A_{1, i}-m_{i, 1} A_{1,1} \\
& =A_{1, i}-\left(A_{i, 1} / A_{1,1}\right) A_{1,1} \\
& =A_{1, i}-A_{i, 1} \\
& =0
\end{aligned}
$$

where the last line follows from the symmetry of A. Therefore, the first row of $A_{1}=\hat{A}_{1} M_{1}^{T}=M_{1} \hat{A}_{1} M_{1}^{T}$ has zeros in elements $(1, i)$, for $i=2, \ldots, n$, as shown in (9).
Note that the first column of \hat{A}_{1} is not changed by the multiplication $\hat{A}_{1} M_{1}^{T}$. Therefore, the $(1,1)$ element of $A_{1}=\hat{A}_{1} M_{1}^{T}=M_{1} \hat{A}_{1} M_{1}^{T}$ is $A_{1,1}$ and the elements $(i, 1)$, for $i=2, \ldots, n$, are zero, as shown in (9).
Finally, note that the multiplication $\hat{A}_{1} M_{1}^{T}$ does not change the elements (i, j), for $i=2, \ldots, n$ and $j=2, \ldots, n$ of \hat{A}_{1}, because all the elements $(i, 1)$ for $i=2, \ldots, n$ in the first column of \hat{A}_{1} are zero. So, the elements $\hat{A}_{i, j}$, for $i=2, \ldots, n$ and $j=2, \ldots, n$, in A_{1} and \hat{A}_{1} are exactly the same.
(c) [2 marks]

Show that the matrix A_{1} shown in (9) is an $n \times n$ real symmetric positive-definite matrix.
$A_{1}=M_{1} A M_{1}^{T}$ is obviously an $n \times n$ real matrix, because each of M_{1}, M_{1}^{T} and A are $n \times n$ real matrices. Hence, the product $M_{1} A M_{1}^{T}$ is an $n \times n$ real matrix. [If they do not mention this, do not take off any marks.]
To see that $A_{1}=M_{1} A M_{1}^{T}$ is symmetric note that

$$
\begin{aligned}
A_{1}^{T} & =\left(M_{1} A M_{1}^{T}\right)^{T} \\
& =\left(M_{1}^{T}\right)^{T} A^{T} M_{1}^{T} \\
& =M_{1} A M_{1}^{T} \\
& =A_{1}
\end{aligned}
$$

where we have used the fact that A is symmetric (i.e., $A=A^{T}$). Since $A_{1}^{T}=A_{1}$, A_{1} is symmetric.
To see that $A_{1}=M_{1} A M_{1}^{T}$ is also positive-definite, note that for any $x \neq \overrightarrow{0}, y=$ $M_{1}^{T} x$ also satisfies $y \neq \overrightarrow{0}$, since M_{1} is nonsingular, hence M_{1}^{T} is also nonsingular. Therefore, $y^{T} A y>0$, since $y \neq \overrightarrow{0}$ and A is symmetric positive-definite. Putting these pieces together, we get that for any $x \neq \overrightarrow{0}$

$$
\begin{aligned}
x^{T} A_{1} x & =x^{T}\left(M_{1} A M_{1}^{T}\right) x \\
& =\left(x^{T} M_{1}\right) A\left(M_{1}^{T} x\right) \\
& =\left(M_{1}^{T} x\right)^{T} A\left(M_{1}^{T} x\right) \\
& =y^{T} A y \\
& >0
\end{aligned}
$$

(d) [5 marks]

Show that you can compute A_{1} with $\frac{1}{2} n(n-1)$ adds and multiplications and $n-1$ divisions.

We need $n-1$ divisions to compute the multipliers

$$
m_{i, 1}=A_{i, 1} / A_{1,1} \quad \text { for } i=2, \ldots, n
$$

Having computed the multipliers with $n-1$ divisions, we need to show that we can compute $A_{1}=M_{1} A M_{1}^{T}$ with $\frac{1}{2} n(n-1)$ additional adds and multiplications. From (9), it is clear that we only need to compute the $\hat{A}_{i, j}$ for $i=2, \ldots, n$ and $j=2, \ldots, n$, since $A_{1,1}$ is the $(1,1)$ element of A and so does not need to be computed, and the zeros in the first row and column of A_{1} don't need to be computed either, since we chose the multipliers so that these elements would be zero.
First note that A_{1} is symmetric, so we need to compute only elements (i, j) of A_{1} for $i=2, \ldots, n$ and $j=2, \ldots, i$, since we can use the symmetry of A_{1} to get the other elements. That is, you only need to compute element (i, j) of A_{1} for $i=2, \ldots, n$ and $j=2, \ldots, i$, since elements (i, j) and (j, i) of A_{1} are the same. So, you don't need to compute the elements (j, i) of A_{1} - you essentially get them for free. Hence, we only need to compute $\frac{1}{2} n(n-1)$ elements of A_{1}.
Second, we noted in part (b) above that the elements $\hat{A}_{i, j}$ for $i=2, \ldots, n$ and $j=2, \ldots, n$ in (9) and (10) are the same. So, we only need to compute elements $\hat{A}_{i, j}$ in (10) for $i=2, \ldots, n$ and $j=2, \ldots, i$. Moreover, to compute each element $\hat{A}_{i, j}$ in (10) requires one multiplication and one subtraction (which we usually call an addition). Therefore, we can compute all the $\hat{A}_{i, j}$ for $i=2, \ldots, n$ and $j=2, \ldots, i$ with $\frac{1}{2} n(n-1)$ adds and multiplications and then use the symmetry of A_{1} to get the other elements $\hat{A}_{i, j}$ for $i=2, \ldots, n-1$ and $j=i+1, \ldots, n$ without any additional computational work.
Therefore, the total computational work required to compute $A_{1}=M_{1} A M_{1}^{T}$ is $\frac{1}{2} n(n-1)$ adds and multiplications and $n-1$ divisions.
(e) [3 marks]

I asked the students to show that they can rewrite

$$
\begin{equation*}
M_{n-1} M_{n-2} \cdots M_{2} M_{1} A M_{1}^{T} M_{2}^{T} \cdots M_{n-2}^{T} M_{n-1}^{T}=D \tag{11}
\end{equation*}
$$

as

$$
\begin{equation*}
A=L D L^{T} \tag{12}
\end{equation*}
$$

I also asked them if they can determine the L needed in (12) without any additional arithmetic work and to justify their answer.

The key here is to note that the $M_{k}=I-m_{k} e_{k}^{T}$ in (11) are the same as the M_{k} that we used in Gaussian elimination. Therefore, they can use without proof that $M_{k}^{-1}=I+m_{k} e_{k}^{T}$ and that

$$
\begin{equation*}
M_{1}^{-1} M_{2}^{-2} \cdots M_{n-1}^{-1}=I+m_{1} e_{1}^{T}+m_{2} e_{2}^{T}+\cdots+m_{n-1} e_{n-1}^{T} \tag{13}
\end{equation*}
$$

Moreover, each of the $m_{k} e_{k}^{T}$ in (13) is an $n \times n$ matrix with all elements zero except for the elements in the $k^{\text {th }}$ column below the diagonal, which are the multipliers used in the $k^{\text {th }}$-stage of the LDL factorization. Therefore, you can form the lower triangular matrix

$$
L=M_{1}^{-1} M_{2}^{-2} \cdots M_{n-1}^{-1}=I+m_{1} e_{1}^{T}+m_{2} e_{2}^{T}+\cdots+m_{n-1} e_{n-1}^{T}
$$

without doing any additional computational work: you just have to put 1's on the diagonal of L and copy the the multipliers used in the $k^{\text {th }}$-stage of the LDL factorization into the $k^{\text {th }}$ column of L below the diagonal.
Note also that

$$
L^{T}=\left(M_{1}^{-1} M_{2}^{-2} \cdots M_{n-1}^{-1}\right)^{T}=M_{n-1}^{-T} \cdots M_{2}^{-T} M_{1}^{-T}
$$

where I have used M_{k}^{-T} for $\left(M_{k}^{-1}\right)^{T}$.
We also need below that $M_{k}^{-T}=\left(M_{k}^{-1}\right)^{T}=\left(M_{k}^{T}\right)^{-1}$.
Therefore, we have from (11) and the discussion above that

$$
\begin{aligned}
A & =M_{1}^{-1} M_{2}^{-2} \cdots M_{n-1}^{-1} D M_{n-1}^{-T} \cdots M_{2}^{-T} M_{1}^{-T} \\
& =L D L^{T}
\end{aligned}
$$

As explained above, we don't need any additional computational work to determine the L. We just need to copy values that are already computed into the right place in L.
4. [15 marks: 5 marks for each part]
(a) To show that there is a unique point $x^{*}>\hat{x}$ for which $f\left(x^{*}\right)=0$, we will follow the advice of the hint and first show that $f(x) \rightarrow \infty$ as $x \rightarrow \infty$.
First note that, since $f^{\prime}(\hat{x})=0$

$$
f^{\prime}(x)=f^{\prime}(x)-f^{\prime}(\hat{x})=\int_{\hat{x}}^{x} f^{\prime \prime}(t) d t>0
$$

for $x>\hat{x}$, since $f^{\prime \prime}(x)>0$ for all $x \in \mathbb{R}$. In addition, $f^{\prime}(x)$ is strictly increasing. That is, if $x_{1}<x_{2}$, then $f^{\prime}\left(x_{1}\right)<f^{\prime}\left(x_{2}\right)$, since

$$
f^{\prime}\left(x_{2}\right)-f^{\prime}\left(x_{1}\right)=\int_{x_{1}}^{x_{2}} f^{\prime \prime}(x) d x>0
$$

Putting these two results together, we get that $f^{\prime}(x)>f^{\prime}(\hat{x}+1)>0$ for $x>\hat{x}+1$. Therefore,

$$
\begin{aligned}
f(x)-f(\hat{x}) & =\int_{\hat{x}}^{x} f^{\prime}(t) d t \\
& =\int_{\hat{x}}^{\hat{x}+1} f^{\prime}(t) d t+\int_{\hat{x}+1}^{x} f^{\prime}(t) d t \\
& \geq 0+f^{\prime}(\hat{x}+1)(x-(\hat{x}+1))
\end{aligned}
$$

since $f^{\prime}(t) \geq 0$ for $t \in[\hat{x}, \hat{x}+1]$ and $f^{\prime}(t) \geq f^{\prime}(\hat{x}+1)$ for $t \in[\hat{x}+1, x]$. Since $f^{\prime}(\hat{x}+1)>0, f^{\prime}(\hat{x}+1)(x-(\hat{x}+1) \rightarrow \infty$ as $x \rightarrow \infty$. Therefore, $f(x) \rightarrow \infty$ as $x \rightarrow \infty$.
Since $f(x) \rightarrow \infty$ as $x \rightarrow \infty$, there must be an $\check{x}>\hat{x}$ such $f(\check{x})>0$.
In addition, since $f^{\prime \prime}(x)$ exists and is continuous for all $x \in \mathbb{R}, f^{\prime}(x)$ exists and is continuous for all $x \in \mathbb{R}$, which in turn implies that $f(x)$ exists and is continuous for all $x \in \mathbb{R}$.
Therefore, we have that

- $f(x)$ is continuous for all $x \in \mathbb{R}$,
- $f(\hat{x})<0$ and $f(\check{x})>0$.

Therefore, by the Intermediate Value Theorem, there is an $x^{*} \in(\hat{x}, \check{x})$ such that $f\left(x^{*}\right)=0$. That is, there is an $x^{*}>\hat{x}$ such that $f\left(x^{*}\right)=0$.
To see that x^{*} is the only point $>\hat{x}$ for which $f\left(x^{*}\right)=0$, it is sufficient to note that $f(x)$ is a strictly increasing function of x for $x>\hat{x}$, since $f^{\prime}(x)>0$ for all $x>\hat{x}$.
Alternatively, they could prove the result by contradiction as follows. Suppose there is another point $y^{*}>\hat{x}$ for which $f\left(y^{*}\right)=0$. If $x^{*}<y^{*}$, then

$$
f\left(y^{*}\right)-f\left(x^{*}\right)=\int_{x^{*}}^{y^{*}} f^{\prime}(x) d x>0
$$

Page 13 of 18 pages.
since we showed above that $f^{\prime}(x)>0$ for all $x>\hat{x}$ and $x \in\left[x^{*}, y^{*}\right]$ implies that $x>\hat{x}$. However, this contradicts, $f\left(y^{*}\right)-f\left(x^{*}\right)=0$, which follows from $f\left(x^{*}\right)=0$ and $f\left(y^{*}\right)=0$. Assuming $x^{*}>y^{*}$ leads to a similar contradiction. Therefore, we must have $x^{*}=y^{*}$. That is, there is only one point $x^{*}>\hat{x}$ for which $f\left(x^{*}\right)=0$.
(b) I asked the students to show that, if $x_{0}>\hat{x}$ and x_{n}, for $n=1,2, \ldots$, is generated by Newton's method

$$
\begin{equation*}
x_{n}=x_{n-1}-f\left(x_{n-1}\right) / f^{\prime}\left(x_{n-1}\right), \quad \text { for } n=1,2, \ldots \tag{14}
\end{equation*}
$$

then

- $x^{*} \leq x_{n}$ for $n=1,2, \ldots$, and
- $x_{n+1} \leq x_{n}$ for $n=1,2, \ldots$

That is, the x_{n} form a decreasing sequence that is bounded below by x^{*}.
A few people seemed to be confused by the assumption that I asked them to show $x^{*} \leq x_{n}$ for $n=1,2, \ldots$, but I told them to assume only $x_{0}>\hat{x}$. Since $\hat{x}<x^{*}$, they were worried that, if $x_{0} \in\left(\hat{x}, x^{*}\right)$, then this would violate $x^{*} \leq x_{n}$ for $n=1,2, \ldots$. Of course, it doesn't, since the condition $x^{*} \leq x_{n}$ for $n=1,2, \ldots$ starts with $n=1$, not $n=0$.

First suppose $x_{0}=x^{*}$. Then $f\left(x_{0}\right)=f\left(x^{*}\right)=0$ and, from part (a), $f^{\prime}\left(x_{0}\right)=$ $f^{\prime}\left(x^{*}\right)>0$. Therefore, (14) with $n=1$, gives $x_{1}=x_{0}=x^{*}$. It follows immediately by induction on n that $x_{n}=x_{0}=x^{*}$ for all $n=1,2, \ldots$. Hence,

- $x^{*} \leq x_{n}$ for $n=1,2, \ldots$, and
- $x_{n+1} \leq x_{n}$ for $n=1,2, \ldots$.

Next assume that $x_{0} \in\left(\hat{x}, x^{*}\right)$. Since $f(x)$ is a strictly increasing function for $x>\hat{x}$ (since $f^{\prime}(x)>0$ for $x>\hat{x}$) and $f\left(x^{*}\right)=0$, we must have $f\left(x_{0}\right)<0$. Also, $f^{\prime}\left(x_{0}\right)>0$. Therefore, from (14), $x_{1}>x_{0}$. Hence, $x_{1}>x_{0}>\hat{x}$.
Now consider the line

$$
l_{0}(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)
$$

We showed in class that the point x_{1} generated from x_{0} by Newton's method (14) satisfies $l_{0}\left(x_{1}\right)=0$. It obviously also satisfies $l_{0}\left(x_{0}\right)=f\left(x_{0}\right)$. Therefore,

$$
\begin{aligned}
f\left(x_{1}\right) & =f\left(x_{1}\right)-l_{0}\left(x_{1}\right) \\
& =\left(f\left(x_{1}\right)-l_{0}\left(x_{1}\right)\right)-\left(f\left(x_{0}\right)-l_{0}\left(x_{0}\right)\right) \\
& =\int_{x_{0}}^{x_{1}}\left(f^{\prime}(x)-l_{0}^{\prime}(x)\right) d x \\
& =\int_{x_{0}}^{x_{1}}\left(f^{\prime}(x)-f^{\prime}\left(x_{0}\right)\right) d x \\
& >0
\end{aligned}
$$

Page 14 of 18 pages.
since $f^{\prime}(x)>f^{\prime}\left(x_{0}\right)$ for $x>x_{0}$. Now recall that $f(x)$ is a strictly increasing function of x and $f\left(x^{*}\right)=0$ and $f\left(x_{1}\right)>0$. Therefore, $x_{1}>x^{*}$.

One the other hand, if $x_{0}>x^{*}$, then $f\left(x_{0}\right)>0$, since $f(x)$ is an increasing function of x and $f\left(x^{*}\right)=0$. We also have that $f^{\prime}\left(x_{0}\right)>0$, since we showed above that $f^{\prime}(x)>0$ for all $x>\hat{x}$ and $x_{0}>x^{*}>\hat{x}$. Therefore, we have from (14) that $x_{1}<x_{0}$. Now consider again the line

$$
l_{0}(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)
$$

As noted above, this line satisfies $l_{0}\left(x_{0}\right)=f\left(x_{0}\right)$. Therefore,

$$
\begin{aligned}
l_{0}\left(x^{*}\right) & =l_{0}\left(x^{*}\right)-f\left(x^{*}\right) \\
& =\left(f\left(x_{0}\right)-l_{0}\left(x_{0}\right)\right)-\left(f\left(x^{*}\right)-l_{0}\left(x^{*}\right)\right) \\
& =\int_{x^{*}}^{x_{0}}\left(f^{\prime}(x)-l_{0}^{\prime}(x)\right) d x \\
& =\int_{x^{*}}^{x_{0}}\left(f^{\prime}(x)-f^{\prime}\left(x_{0}\right)\right) d x \\
& <0
\end{aligned}
$$

since $f^{\prime}(x)<f^{\prime}\left(x_{0}\right)$ for $x=\left[x^{*}, x_{0}\right)$, since $f^{\prime}(x)$ is an increasing function of x (because $f^{\prime \prime}(x)>0$ for all $x \in \mathbb{R}$). Now note that $l_{0}\left(x_{0}\right)=f\left(x_{0}\right)>0, l_{0}\left(x^{*}\right)<0$ and $l_{0}(x)$ is continuous. So, $l_{0}(x)$ has a root $x_{1} \in\left(x^{*}, x_{0}\right)$. However, the root x_{1} of $l_{0}(x)$ is the iterate x_{1} of Newton's method (14). Therefore, we have shown that the iterate x_{1} for Newton's method (14) satisfies $x_{1}>x^{*}$.
Hence, whether $x_{0}<x^{*}$ or $x_{0}>x^{*}$, we get $x_{1}>x^{*}$.
Now we show by induction on n that

- $x^{*}<x_{n}$ for $n=1,2, \ldots$, and
- $x_{n+1}<x_{n}$ for $n=1,2, \ldots$

For the base case, $n=1$, we have already proved $x^{*}<x_{1}$. Since $f(x)$ is an increasing function for $x>\hat{x}$ and $f\left(x^{*}\right)=0, f\left(x_{1}\right)>0$. Also, $f^{\prime}\left(x_{1}\right)>0$. Therefore, from (14), $x_{2}<x_{1}$. Therefore, we have proved the two statements

- $x^{*}<x_{n}$
- $x_{n+1}<x_{n}$
for $n=1$.
Moreover, the general case is essentially the same as the proof given above for $x_{0}>x^{*}$. That is, if we assume the induction hypothesis that $x^{*}<x_{n-1}$, then we can prove $x^{*}<x_{n}$ using the same approach as given above for to prove $x^{*}<x_{1}$ if we start from $x^{*}<x_{0}$. Once you have proven $x^{*}<x_{n}$, it follows easily that $f\left(x_{n}\right)>0$ and $f^{\prime}\left(x_{n}\right)>0$. Hence it follows immediately from Newton's method (14) that $x_{n+1}<x_{n}$.
(c) We showed in part (b) that the x_{n} generated by Newton's method (14) form a decreasing sequence that is bounded below by x^{*}. I told them that they can use without proof that a decreasing sequence that is bounded below must converge. That is, they can conclude from part (b) without proof that $x_{n} \rightarrow y^{*}$ as $n \rightarrow \infty$ and that $x^{*} \leq y^{*}$.
They are asked to show in this part that $x^{*}=y^{*}$.
We will show that $x^{*}=y^{*}$ by first showing that $f\left(y^{*}\right)=0$. Then recall that $f(x)$ has a unique root $x^{*}>\hat{x}$. Since both $f\left(x^{*}\right)=0$ and $f\left(y^{*}\right)=0$ and both $x^{*}>\hat{x}$ and $y^{*}>\hat{x}$, we must have that $x^{*}=y^{*}$ (since otherwise $f(x)$ would have two roots greater than \hat{x}).
So all that remains is to show that $f\left(y^{*}\right)=0$. To this end note we can rewrite (14) as

$$
f\left(x_{n-1}\right)=-f^{\prime}\left(x_{n-1}\right)\left(x_{n}-x_{n-1}\right)
$$

Hence,

$$
\begin{equation*}
\left|f\left(x_{n-1}\right)\right|=\left|f^{\prime}\left(x_{n-1}\right)\right|\left|x_{n}-x_{n-1}\right| \leq\left|f^{\prime}\left(x_{1}\right)\right|\left|x_{n}-x_{n-1}\right| \tag{15}
\end{equation*}
$$

for $n \geq 2$, since $x^{*}<x_{n-1}<x_{1}$ from part (b) and $f^{\prime}(x)$ is a positive increasing function for $x>x^{*}$, whence $0<f^{\prime}\left(x_{n-1}\right)<f^{\prime}\left(x_{1}\right)$. Now $x_{n} \rightarrow y^{*}$ as $n \rightarrow \infty$. So, $\left|x_{n}-x_{n-1}\right| \rightarrow 0$ as $n \rightarrow \infty$. Hence, it follows from (15) that

$$
\lim _{n \rightarrow \infty} f\left(x_{n-1}\right)=0
$$

However, $f(x)$ is a continuous function. So,

$$
\lim _{n \rightarrow \infty} f\left(x_{n-1}\right)=f\left(y^{*}\right)
$$

Thus, $f\left(y^{*}\right)=0$.
5. [10 marks: 5 marks for each part]

I told the students to assume that we are given the data

$$
\begin{array}{ccc}
t_{1}=-1 & t_{2}=0 & t_{3}=1 \\
y_{1}=1 & y_{2}=0 & y_{3}=1
\end{array}
$$

and we want to find a polynomial $p(t)$ of degree 2 or less that satisfies

$$
p\left(t_{i}\right)=y_{i} \quad \text { for } i=1,2,3 .
$$

(a) The students are asked to use the monomial basis approach to find the polynomial $p(t)$ in the form

$$
\begin{equation*}
p(t)=c_{1}+c_{2} t+c_{3} t^{2} \tag{16}
\end{equation*}
$$

They are also asked to give the values of the coefficients c_{1}, c_{2}, c_{3}.
We can convert this problem of finding the coefficients c_{1}, c_{2}, c_{3} of $p(t)$ to the following linear algebra problem for the coefficients c_{1}, c_{2}, c_{3}.

$$
\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

The middle equation gives $c_{1}=0$. Substituting this value into the first and third equations gives the smaller system

$$
\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)\binom{c_{2}}{c_{3}}=\binom{1}{1}
$$

Adding these two equations together gives

$$
2 c_{3}=2
$$

Hence, $c_{3}=1$ from which it follows that $c_{2}=0$.
Thus, our solution is $c_{1}=0, c_{2}=0$ and $c_{3}=1$. Hence, the polynomial is

$$
p(t)=t^{2}
$$

(b) The students are asked to use the Lagrange basis approach to find the polynomial $p(t)$ in the form

$$
\begin{equation*}
p(t)=l_{1}(t) y_{1}+l_{2}(t) y_{2}+l_{3}(t) y_{3} \tag{17}
\end{equation*}
$$

where the $l_{i}(t)$, for $i=1,2,3$, are the Lagrange basis functions.
They are also asked to show that the polynomial $p(t)$ written in the monomial basis form (16) is the same as the polynomial $p(t)$ written in the Lagrange basis form (17).

To begin, note that we don't need $l_{2}(t)$ since $y_{2}=0$. The $l_{1}(t)$ and $l_{3}(t)$ Lagrange basis functions for this example are

$$
\begin{gathered}
l_{1}(t)=\frac{\left(t-t_{2}\right)\left(t-t_{3}\right)}{\left(t_{1}-t_{2}\right)\left(t_{1}-t_{3}\right)}=\frac{t(t-1)}{(-1)(-2)}=\frac{t(t-1)}{2} \\
l_{3}(t)=\frac{\left(t-t_{1}\right)\left(t-t_{2}\right)}{\left(t_{3}-t_{1}\right)\left(t_{3}-t_{2}\right)}=\frac{(t+1) t}{(2)(1)}=\frac{(t+1) t}{2}
\end{gathered}
$$

Therefore

$$
\begin{aligned}
p(t) & =l_{1}(t) y_{1}+l_{2}(t) y_{2}+l_{3}(t) y_{3} \\
& =\frac{t(t-1)}{2}+\frac{(t+1) t}{2} \\
& =t^{2}
\end{aligned}
$$

Note that I've shown above that the polynomial $p(t)$ written in the monomial basis form (16) is the same as the polynomial $p(t)$ written in the Lagrange basis form (17). They are both $p(t)=t^{2}$.

