
CSC 336 Exam Solution December 2016.

1. [10 marks; 2 marks for each part]

For each of the five statements below, say whether the statement is true or false and
briefly justify your answer.

(a) A problem that is highly sensitive to small changes in the problem data is poorly
conditioned.

True. The definition I gave them in class is that, a problem is poorly conditioned
if small changes to the input of the problem can cause large changes to the
output of the problem. Saying that a problem us “highly sensitive to small
changes in the problem data” is essentially the same thing.

(b) In a floating-point number system, the underflow level (i.e., UFL in your textbook)
is the largest positive floating-point number δ such that fl(1+δ) = 1, where fl(1+δ)
is the floating-point value you get when you compute 1 + δ in this floating-point
number system.

False. The underflow level, UFL, is the smallest positive normalized floating-
point number. The δ given above is similar to the way machine epsilon,
ǫmach, is sometimes defined. Typically, 0 < UFL ≪ ǫmach.

(c) Let A be an n× n nonsingular real matrix. If the condition number of A is very
large, then the determinant of A must be close to zero.

False. Consider the example

A =

(

a 0
0 1/a

)

where a ≫ 1. Clearly

A−1 =

(

1/a 0
0 a

)

So,
cond∞(A) = ‖A‖∞ · ‖A−1‖∞ = a · a = a2

However, det(A) = 1. Therefore, this is an example for which condition
number of A is very large, but the determinant of A is not close to zero.

(d) For a given fixed level of accuracy, a super-linearly convergent iterative method al-
ways requires fewer iterations than a linearly convergent method to find a solution
to that level of accuracy.

False. Eventually a super-linearly convergent methods will converge faster than
a linearly convergent method, but this may not be the case at the start of the
iteration. Hence, if the level of accuracy is quite relaxed, a linearly convergent
method may reach that level of accuracy before a super-linearly convergent
method does.
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(e) Given three pairs of points (x1, y1), (x2, y2), (x3, y3), where xi ∈ R for i = 1, 2, 3,
yi ∈ R for i = 1, 2, 3 and the xi are distinct, it is always possible to find a
polynomial p(x) of degree 2 or less such that p(xi) = yi for i = 1, 2, 3.

True. This is a special case of the theorem I gave them in class that says:

Given n points (x1, y1), (x2, y2), . . . , (xn, yn), where n ≥ 1, the xi ∈ R

for i = 1, 2, . . . , n, yi ∈ R for i = 1, 2, . . . , n and the xi are distinct,
there is a unique polynomial p(x) of degree n− 1 or less that satisfies
p(xi) = yi for i = 1, 2, . . . , n.
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2. [10 marks: 5 marks for each part]

(a) The formula (1) produces such poor approximations to π when computed us-
ing IEEE double-precision floating-point arithmetic because if suffers from catas-

trophic cancellation. To be more specific, note that, when n is large, pn/2
n ≪ 1,

since pn ∈ [0, 4]. So, 1−(pn/2
n)2 ≈ 1, whence

√

1− (pn/2n)2 ≈ 1 also. Therefore,

there is catastrophic cancellation when we compute 1−
√

1− (pn/2n)2.

For n = 29,

(p29/2
29)2 ≈ (π/229)2 ≈ π2/258 ≤ 24/258 = 2−54 <

1

2
ǫmach

since ǫmach = 2−52 in IEEE double-precision floating-point arithmetic. Therefore,
fl(1 − (p29/2

29)2) = 1, whence fl(1 −
√

1− (p29/229)2) = 0. Therefore, from (1)
and the results above, we see that fl(p30) = 0. Moreover, it follows immediately
from (1), that once pn̂ = 0 for any n̂, then pn = 0 for all n ≥ n̂.

(b) To find a formula that is mathematically equivalent to formula (1) but does not
suffer from the extreme loss of accuracy that we see in the numerical results for
formula (1), note that

1−
√

1− (pn/2n)2 =
(

1−
√

1− (pn/2n)2
)1 +

√

1− (pn/2n)2

1 +
√

1− (pn/2n)2

=
1−

(

1− (pn/2
n)2

)

1 +
√

1− (pn/2n)2

=
(pn/2

n)2

1 +
√

1− (pn/2n)2

Therefore,

pn+1 = 2n

√

2

(

1−

√

1− (pn/2n)
2

)

= 2n

√

2
(pn/2n)2

1 +
√

1− (pn/2n)2

= pn

√

2

1 +
√

1− (pn/2n)2

Hence,

pn+1 = pn

√

2

1 +
√

1− (pn/2n)2
(1)

Note that formula (1) does not suffer from catastrophic cancellation. If you com-
pute with it, you get very good approximations to π.
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3. [20 marks: 5 marks for each part]

(a) For the matrix

A =





−1 −2 1
4 4 −4
2 −1 −5





in the first stage of Gaussian elimination with partial pivoting, we first inter-
change rows 1 and 2. That is, we multiply A by the permutation matrix

P1 =





0 1 0
1 0 0
0 0 1





to get

P1A =





4 4 −4
−1 −2 1
2 −1 −5





Then we eliminate the elements below the main diagonal in the first column of A
by multiplying A by

M1 =





1 0 0
1/4 1 0
−1/2 0 1





to get

M1(P1A) =





4 4 −4
0 −1 0
0 −3 −3





In the second stage of Gaussian elimination with partial pivoting, we first inter-
change rows 2 and 3. That is, we multiply M1P1A by the permutation matrix

P2 =





1 0 0
0 0 1
0 1 0





to get

P2(M1P1A) =





4 4 −4
0 −3 −3
0 −1 0





Then we eliminate the elements below the main diagonal in the second column of
P2M1P1A by multiplying P2M1P1A by

M2 =





1 0 0
0 1 0
0 −1/3 1




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to get

U = M2(P2M1P1A) =





4 4 −4
0 −3 −3
0 0 1





To get the LU factorization of A from M2P2M1P1A = U , first define

M̂1 = P2M1P
T

2 =





1 0 0
−1/2 1 0
1/4 0 1





Then note that, since P2M1 = M̂1P2,

M2M̂1P2P1A = M2P2M1P1A = U

Therefore,
P2P1A = M̂−1

1 M−1
2 U

Therefore, if we let

P = P2P1 =





0 1 0
0 0 1
1 0 0





and

L = M̂−1
1 M−1

2 =





1 0 0
1/2 1 0
−1/4 0 1









1 0 0
0 1 0
0 1/3 1



 =





1 0 0
1/2 1 0
−1/4 1/3 1





we have PA = LU .
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(b) To use the LU factorization of A computed in part (a) above to solve the linear
system Ax = b, where

b =





−2
4

−4





first let

b̂ = Pb =





4
−4
−2





Now note that
LUx = PAx = Pb = b̂

Therefore, solving LUx = b̂ is equivalent to solving Ax = b. To solve LUx = b̂,
first let y = Ux, solve Ly = b̂ and then solve Ux = y. Note that Ly = b̂ is





1 0 0
1/2 1 0
−1/4 1/3 1









y1
y2
y3



 =





4
−4
−2





So,

y1 = 4

1

2
y1 + y2 = −4

y2 = −4−
1

2
y1

y2 = −4−
1

2
4

y2 = −6

−
1

4
y1 +

1

3
y2 + y3 = −2

y3 = −2 +
1

4
y1 −

1

3
y2

y3 = −2 +
1

4
4 +

1

3
6

y3 = 1

That is,

y =





4
−6
1





Now note that Ux = y is




4 4 −4
0 −3 −3
0 0 1









x1

x2

x3



 =





4
−6
1




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So,

x3 = 1

−3x2 − 3x3 = −6

−3x2 = −6 + 3x3

−3x2 = −6 + 3

−3x2 = −3

x2 = 1

4x1 + 4x2 − 4x3 = 4

4x1 = 4− 4x2 + 4x3

4x1 = 4− 4 + 4

4x1 = 4

x1 = 1

That is,

x =





1
1
1




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(c) We want to find a u and v so that

A− uvT = Â =





−1 −2 1
4 4 −4
2 −1 1





That is, we need

uvT = A− Â =





−1 −2 1
4 4 −4
2 −1 −5



−





−1 −2 1
4 4 −4
2 −1 1



 =





0 0 0
0 0 0
0 0 −6





There are many vectors u and v that give the required matrix above. Give them
full marks for any choice of u and v that gives the matrix above.

The choice that I will use is

u =





0
0

−6



 v =





0
0
1





This choice makes the arithmetic in part (d) fairly simple.
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(d) Note that solving Âx̂ = b is equivalent to computing x̂ = Â−1b, where Â =
A− uvT . From the Sherman-Morrison formula, we have

Â−1 = (A− uvT )−1 = A−1 +
A−1uvTA−1

1− vTA−1u

Therefore,

x̂ = Â−1b =

(

A−1 +
A−1uvTA−1

1− vTA−1u

)

b

= A−1b+
(A−1u) vT (A−1b)

1− vT (A−1u)
(2)

Now note that x = A−1b is equivalent to Ax = b. Moreover, we have already
solved Ax = b in part (b) above.

In addition, w = A−1u is equivalent to Aw = u. Moreover, we can use the LU
factorization of A from part (a) to solve Aw = u as follows. First compute

û = Pu =





0
−6
0





Then Aw = u is equivalent to PAw = Pu = û, which in turn is equivalent to
LUw = û. To solve LUw = û, first let z = Uw, solve Lz = û and then solve
Uw = z. We solve Lz = û as





1 0 0
1/2 1 0
−1/4 1/3 1









z1
z2
z3



 =





0
−6
0





Hence,

z1 = 0

1

2
z1 + z2 = −6

z2 = −6

−
1

4
z1 +

1

3
z2 + z3 = 0

z3 = −
1

3
z2

z3 = 2

That is,

z =





0
−6
2




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We solve Uw = z as




4 4 −4
0 −3 −3
0 0 1









w1

w2

w3



 =





0
−6
2





So,

w3 = 2

−3w2 − 3w3 = −6

−3w2 = −6 + 3w3

−3w2 = −6 + 6

−3w2 = 0

w2 = 0

4w1 + 4w2 − 4w3 = 0

4w1 = −4w2 + 4w3

4w1 = 8

w1 = 2

That is,

w =





2
0
2





Now substitute x for A−1b and w for A−1u in (2) to get

x̂ = x+
wvTx

1− vTw

= x+
vTx

1− vTw
w

Now note that

vTx = (0 0 1)





1
1
1



 = 1

and

vTw = (0 0 1)





2
0
2



 = 2
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Therefore,

x̂ = x+
vTx

1− vTw
w

= x+
1

1− 2
w

= x− w

=





1
1
1



−





2
0
2





=





−1
1

−1




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4. [15 marks: 5 marks for each part]

Note that f(x) = 2 + cos(x)− ex for x ∈ R and we are given the following table.

x 2 + cos(x) ex

0.50000 2.87758 1.64872
0.60000 2.82534 1.82212
0.70000 2.76484 2.01375
0.80000 2.69671 2.22554
0.90000 2.62161 2.45960
1.00000 2.54030 2.71828
1.10000 2.45360 3.00417
1.20000 2.36236 3.32012
1.30000 2.26750 3.66930
1.40000 2.16997 4.05520
1.50000 2.07074 4.48169

(a) To find an interval of length at most 0.1 that contains a root of f(x), note from
the table above that

f(0.9) = 2 + cos(x)− ex = 2.62161− 2.45960 > 0

f(1.0) = 2 + cos(x)− ex = 2.54030− 2.71828 < 0

Since f(x) is continuous and f(0.9) > 0 and f(1.0) < 0, by the intermediate value
theorem, f(x) must have a root in the interval [0.9, 1.0]. Note the length of this
interval is 0.1.

Page 12 of 16 pages.



(b) f(x) has exactly one root.

To see that this is true, note that

f ′(x) = − sin(x)− ex

whence
f ′(0) = − sin(0)− e0 = 0− 1 = −1 < 0

In addition, for x > 0, −1 ≤ sin(x) ≤ 1 and ex > 1. Therefore, − sin(x) ≤ 1 and
−ex < −1. Hence,

f ′(x) = − sin(x)− ex < 1− 1 = 0

Hence, f ′(x) < 0 for all x ≥ 0. Therefore, f(x) is strictly decreasing for all x ≥ 0.
Consequently, f(x) can have at most one root r ≥ 0. In part (a), we showed that
f(x) has a root r ∈ [0.9, 1.0]. Hence, f(x) has exactly one root r ≥ 0.

If x < 0, then −1 ≤ cos(x) ≤ 1 and ex < 1. Therefore, if x < 0, cos(x) ≥ −1 and
−ex > −1 Hence, if x < 0,

f(x) = 2 + cos(x)− ex > 2− 1− 1 = 0

That is, if x < 0, then f(x) > 0. Hence, f(x) cannot have a root r < 0.

So, we have shown that

• f(x) has exactly one root r ≥ 0, and

• f(x) cannot have a root r < 0.

Hence, f(x) has exactly one root r and r ∈ [0.9, 1.0].
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(c) Given a starting guess, x0, Newton’s iteration to find a root of f(x) in general is

xn+1 = xn −
f(xn)

f ′(xn)
for n = 0, 1, 2, . . .

For our specific f(x) = 2 + cos(x) − ex, f ′(x) = − sin(x) − ex. Hence, Newton’s
iteration to find a root of this specific function is

xn+1 = xn −
2 + cos(xn)− exn

− sin(xn)− exn

which can be simplified to

xn+1 = xn +
2 + cos(xn)− exn

sin(xn) + exn

To choose a good starting value for Newton’s method above, recall that the root
we are looking for is in the interval [0.9, 1.0]. Any value in this interval would be
a good starting value for f(x). Give them full marks for this part of the question
if they choose any value in [0.9, 1.0].

However, two particularly good choices are the midpoint of [0.9, 1.0], which is
x0 = 0.95. This choice ensures that |x0 − r| ≤ 0.05, where r is the root of f(x).
If you were to choose an end-point of the interval instead, for example x0 = 0.9,
then all that you could claim is |x0 − r| ≤ 0.1.

A second good choice is the value that you get from the secant method. This is
the same as the value you get if you interpolate the end-points (0.9, f(0.9)) and
(1.0, f(1.0)) by polynomial of degree 1 (i.e., a line) and then find the root of the
line. The formula for this is

x0 = 0.9− f(0.9)
1.0− 0.9

f(1.0)− f(0.9)

I wouldn’t expect them to calculate the actual value for this x0, since they don’t
have a calculator at the exam. However, it works out to be

x0 = 0.94765

which is quite close to the midpoint, 0.95.
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5. [5 marks]

There are several methods to find a polynomial p(x) of degree 3 or less that satisfies

p(0) = 1

p(1) = 0

p(−1) = 2

p(2) = 5

Give them full marks if use any of these methods correctly. Also, they don’t need to
simplify their answer. For example, they can leave it in Lagrange form or Newton
form.

Note: even though there are several different forms of the interpolating polynomial,
the different forms are all the same polynomial. That is, if you evaluate two different
forms of the interpolating polynomial at any value x, you get the same value for p(x).
Equivalently, if you simplify the polynomial to the standard form

p(x) = c0 + c1x+ c2x
2 + c3x

3

you get exactly the same coefficients c0, c1, c2 and c3 not matter how you derive the
polynomial.

If you use the matrix form, the interpolation conditions above are equivalent to









1 0 0 0
1 1 1 1
1 −1 1 −1
1 2 4 8

















c0
c1
c2
c3









=









1
0
2
5









The students can solve this system any way they want. However, no matter how they
solve it, they should get c0 = 1, c1 = −2, c2 = 0 and c3 = 1. Therefore,

p(x) = 1− 2x+ x3

If you use the Lagrange form, you get

p(x) =
(x− 1)(x+ 1)(x− 2)

2
1

−
x(x+ 1)(x− 2)

2
0

−
x(x− 1)(x− 2)

6
2

+
x(x− 1)(x+ 1)

6
5
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If you simplify this a little, you get

p(x) =
1

2
(x− 1)(x+ 1)(x− 2)−

1

3
x(x− 1)(x− 2) +

5

6
x(x− 1)(x+ 1)

As noted above, they are not required to simplify this further. However, if they do,
they should get

p(x) = 1− 2x+ x3
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