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1. [10 marks; 2 marks for each part]

For each of the five statements below, say whether the statement is true or false and
briefly justify your answer.

(a) A good algorithm will produce an accurate solution to a problem regardless of
the conditioning of the problem being solved.

(b) In the IEEE double-precision floating-point number system, machine epsilon, of-
ten referred to as ǫmach in your textbook, is the smallest positive floating-point
number. That is, there are no double-precision floating-point numbers between
ǫmach and zero.

(c) A well-conditioned matrix can have a very small determinant. That is, an n× n
matrix A can have cond(A) not too large (for example, 1 ≤ cond(A) ≤ 10), but
det(A) very close to 0 (i.e., 0 < det(A) ≪ 1).

(d) If an iterative method for solving a nonlinear equation gains more than one bit of
accuracy per iteration, then it is said to have a superlinear rate of convergence.

(e) Suppose you are given N data points, (t1, y1), (t2, y2), . . . , (tN , yN), where

• N is a positive integer,

• each tn ∈ R and each yn ∈ R, for n = 1, 2, . . . , N , and

• t1 < t2 < · · · < tN .

Then there are infinitely many polynomials of degree N that interpolate the data
points (t1, y1), (t2, y2), . . . (tN , yN ).
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2. [10 marks: 5 marks for each part]

Walter was having trouble debugging his program. He traced the problem to a certain
section of his code, but what he was computing there was fairly complex. So, he
decided to try a simpler example of what he thought might be wrong with his code to
see if that might help him determine the problem.

Walter knew that, if

f(x) =
ex − 1

x

then
lim
x→0

f(x) = 1 (1)

(For this question, just accept (1) as being true: you don’t have to prove it.)

So, he expected that, if he computed f(x) for smaller and smaller positive values of x,
the computed values of f(x) would get closer and closer to 1. He decided to test this
conjecture, since he knew that odd things often happen in floating-point computation.
So, he wrote a little MatLab program that computes f(x) in IEEE double-precision
floating-point arithmetic for x = 10−k and k = 1, 2, . . . , 15. To his surprise, he got the
results shown in the third column of the table on page 4.

He showed his results to his colleague, Irene, who suggested that he try computing
instead

g(x) =
ex − 1

ln(ex)

where ln is the natural logarithm (also referred to as the logarithm to the base e (i.e.,
loge)).

Walter thought that this was a ridiculous suggestion, since ln(ex) = x, whence f(x) =
g(x) for all x ∈ R (assuming you define f(0) = g(0) = 1). Nevertheless, he tried Irene’s
suggestion and, to his surprise, he got the results shown in the fourth column of the
table on page 4.
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k x f(x) g(x)
1 10−1 1.051709180756477 1.051709180756476
2 10−2 1.005016708416795 1.005016708416806
3 10−3 1.000500166708385 1.000500166708342
4 10−4 1.000050001667141 1.000050001666708
5 10−5 1.000005000006965 1.000005000016667
6 10−6 1.000000499962184 1.000000500000167
7 10−7 1.000000049433680 1.000000050000002
8 10−8 0.999999993922529 1.000000005000000
9 10−9 1.000000082740371 1.000000000500000
10 10−10 1.000000082740371 1.000000000050000
11 10−11 1.000000082740371 1.000000000005000
12 10−12 1.000088900582341 1.000000000000500
13 10−13 0.999200722162641 1.000000000000050
14 10−14 0.999200722162641 1.000000000000005
15 10−15 1.110223024625157 1.000000000000000

(a) Explain why, when f(x) is computed in IEEE double-precision floating-point
arithmetic, the computed values first appear to be converging to 1 for k =
1, 2, . . . , 8, but then diverge from 1 for k = 11, 12, . . . , 15.

(b) Explain why, when g(x) is computed in IEEE double-precision floating-point
arithmetic, the computed values appear to be converging to 1 for k = 1, 2, . . . , 15.
In particular, explain why the computed values for g(x) are so much more accurate
than the computed values for f(x) for k = 11, 12, . . . , 15.

In answering the questions above, you can assume that the MatLab function exp(x)
computes an accurate approximation to ex. In particular, you can assume that

exp(x) = ex(1 + δx)

where δx changes with x, but its magnitude is at most a few multiples of ǫmach. (I.e.,
|δx| ≤ c ǫmach for some c that is at most 2 or 3.)

You can make some other reasonable assumption about the accuracy of the MatLab
ln function, but remember that ln(u) is ill-conditioned for u near 1. If you make an
assumption about the accuracy of the MatLab ln function, be sure to state what your
assumption is.
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3. [15 marks: 2 marks for each of parts (a) and (c); 3 marks for each of parts (b) and
(e); 5 marks for part (d)]

We didn’t have time this year to discuss in class the Cholesky factorization, or the
closely related LDL factorization, of a real symmetric positive-definite matrix. We
consider these two factorizations briefly in this question.

To begin, recall that A is an n × n real matrix if Ai,j ∈ R for all i = 1, 2, . . . , n and
j = 1, 2, . . . , n, where Ai,j is the (i, j)-element of the matrix A (i.e., Ai,j is the value in
row i and column j of the matrix A).

An n× n real matrix A is symmetric positive-definite if

• A is symmetric (i.e., AT = A), and

• xTAx > 0 for all x ∈ R
n such that x 6= ~0, where ~0 is the vector in R

n with ~0i = 0
for all i = 1, 2, . . . , n (i.e., all components for the vector ~0 are zero).

The Cholesky factorization of an n× n real symmetric positive-definite matrix A is

A = L̂L̂T (2)

where L̂ is an n × n lower triangular matrix. The LDL factorization of an n × n real
symmetric positive-definite matrix A is

A = LDLT (3)

where L is an n× n lower triangular matrix with 1’s on its diagonal (like the L in the
LU factorization) and D is an n × n diagonal matrix (i.e., Di,j = 0 for i 6= j) with

Di,i > 0 for i = 1, 2, . . . , n. Note that L̂ does not usually have 1’s on its diagonal.

You don’t have to show this here, but, if you have a Cholesky factorization (2) of A
you can easily compute that LDL factorization (3) of A from (2) and vice-versa. So,
(2) and (3) are almost equivalent factorizations of A.

The advantages of the Cholesky factorization (2) of A over the usual LU factorization
of A are

• the Cholesky factorization (2) of A requires you to store about half as many values
as the LU factorization of A,

• the Cholesky factorization (2) of A requires about half as many arithmetic oper-
ations to compute as the LU factorization of A, and

• you don’t have to pivot for stability when computing the Cholesky factorization
(2).

The LDL factorization (3) of A shares the same advantages as the Cholesky factoriza-
tion (2) of A.

In this question, we focus on computing the LDL factorization (3) of A.
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(a) Show that, if A is an n× n real symmetric positive-definite matrix, then Ai,i > 0
for all i = 1, 2, . . . , n.

Hint: for each i = 1, 2, . . . , n, choose a particular x̂ ∈ R
n for which x̂ 6= ~0 and

Ai,i = x̂TAx̂. Then note that x̂TAx̂ > 0, since x̂ 6= ~0 and A is an n × n real
symmetric positive-definite matrix.

What is the required vector x̂?

Even if you were not able to prove Ai,i > 0 for all i = 1, 2, . . . , n, assume that this is
true for the remainder of this question.

From part (a) above, if follows that A1,1 > 0. Therefore, you can compute that
multipliers

mi,1 = Ai,1/A1,1 for i = 2, . . . , n

and form the vectors

m1 =















0
m2,1

m3,1,

...
mn,1















e1 =















1
0
0
...
0















and the matrix
M1 = I −m1 e

T
1

where I is the n× n identity matrix.

(b) Show that

A1 = M1AM
T
1 =















A1,1 0 0 · · · 0

0 Â2,2 Â2,3 · · · Â2,n

0 Â3,2 Â3,3 · · · Â3,n

...
...

...
. . .

...

0 Ân,2 Ân,3 · · · Ân,n















(4)

where A1,1 is the (1,1)-element of the original matrix A and the Âi,j , for i =
2, . . . , n and j = 2, . . . , n, are modified elements of A computed by multiplying A
by M1 on the left and by MT

1 on the right.

Even if you were not able to prove that A1 has the structure shown in (4), assume that
A1 has this structure for the remainder of this question.

(c) Show that the matrix A1 shown in (4) is an n×n real symmetric positive-definite
matrix.
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Even if you were not able to prove that A1 is an n×n real symmetric positive-definite
matrix, assume that this is the case for the remainder of this question.

It might at first appear that 2(n−1)2 adds and multiplications are required to compute
A1, since

• the operation M1A essentially multiplies row 1 of A by mi,1 and adds it to row i
of A, for i = 2, . . . , n, and

• (M1A)M
T
1 multiplies column 1 of (M1A) bymi,1 and adds it to column i of (M1A),

for i = 2, . . . , n.

However, because of the symmetry of A and A1, you can compute A1 much faster than
this.

(d) Show that you can compute A1 with
1

2
n(n−1) adds and multiplications and n−1

divisions.

Even if you were not able to prove that you can compute A1 with 1

2
n(n− 1) adds and

multiplication and n − 1 divisions, assume that this is the case for the remainder of
this question.

We have from part (c) that A1 shown in (4) is an n×n real symmetric positive-definite
matrix. Hence, by applying the result of part (a) to A1, rather than A, we know that
Âi,i > 0 for all i = 2, . . . , n.

Therefore, since Â2,2 > 0, you can compute that multipliers

mi,2 = Âi,2/Â2,2 for i = 3, . . . , n

and form the vectors

m2 =















0
0

m3,2

...
mn,2















e2 =















0
1
0
...
0















and the matrix
M2 = I −m2 e

T
2

where I is the n× n identity matrix. Then, from an argument similar to the one used
to prove part (b) above, it follows that

A2 = M2A1M
T
2 =



















A1,1 0 0 0 · · · 0

0 Â2,2 0 0 · · · 0

0 0 Ã3,3 Ã3,4 · · · Ã3,n

0 0 Ã4,3 Ã4,4 · · · Ã4,n

...
...

...
...

. . .
...

0 0 Ãn,3 Ãn,4 · · · Ãn,n



















(5)
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where A1,1 is the (1,1)-element of the original matrix A, Â2,2 is the (2,2)-element of
the matrix A1 in equation (4) and Ãi,j , for i = 3, . . . , n and j = 3, . . . , n, are modified
elements of A1 computed by multiplying A1 by M2 on the left and by MT

2 on the right.

Then, from an argument similar to the one used to prove part (d) above, it follows that
you can compute A2 with

1

2
(n−1)(n−2) adds and multiplications and n−2 divisions.

Continuing in this way, we get that

Mn−1Mn−2 · · ·M2M1AM
T
1 M

T
2 · · ·MT

n−2M
T
n−1 = D (6)

where D is a diagonal matrix (i.e., Di,j = 0 for i 6= j) with D1,1 = A1,1 > 0, D2,2 =

Â2,2 > 0 and Di,i > 0 for i = 3, . . . , n. Also

Mk = I −mke
T
k

for k = 1, 2, . . . , n − 1, where mk is the vector of multipliers used in the kth-stage of
the LDL factorization and ek is the kth column of the n × n identity matrix. To be
more specific, the top k elements of mk are zero and the bottom n− k are the actual
multipliers used in the kth-stage of the LDL factorization.

Also, as noted above, the first stage of the LDL factorization requires 1

2
n(n− 1) adds

and multiplications and n− 1 divisions and the second stage of the LDL factorization
requires 1

2
(n − 1)(n − 2) adds and multiplications and n − 2 divisions. By a similar

argument, it follows that the kth-stage of the LDL factorization requires 1

2
(n − k +

1)(n− k) adds and multiplications and n− k divisions. Hence, the total computation
work required to compute the LDL factorization is

n−1
∑

k=1

1

2
(n− k + 1)(n− k) =

1

2

(

n−1
∑

k=1

(n− k)2 +
n−1
∑

k=1

(n− k)

)

=
1

2

(

n(2n− 1)(n− 1)

6
+

n(n− 1)

2

)

=
n3

6
+O(n2)

adds and multiplications plus

n−1
∑

k=1

(n− k) =
n(n− 1)

2
=

n2

2
+O(n)

divisions. Note that this is about half the computational work required by the LU
factorization that we discussed in class.

(e) Show that you can rewrite (6) as (3).

Can you determine the L needed in (3) without any additional arithmetic work?
Justify your answer.
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4. [15 marks: 5 marks for each part]

It is well-known that, in many cases, Newton’s method converges quadratically if you
start close enough to a root, but that it may not converge at all, if you start too far from
a root. However, there are some cases for which Newton’s method always converges.
We consider one such case below.

Assume f ′′(x) exists and is continuous for all x ∈ R and that f ′′(x) > 0 for all x ∈ R.
Hence, f(x) is a convex function. Assume also that there is a point x̂ ∈ R for which
f ′(x̂) = 0 and f(x̂) < 0.

f(x) = x2 − 1 is an example of such a function; x̂ = 0 in this case.

(a) Show that there is a unique point x∗ > x̂ for which f(x∗) = 0.

Hint: to show that there is at least one point x∗ > x̂ for which f(x∗) = 0, you
might find it helpful to first show that f(x) → ∞ as x → ∞.

(b) Show that, if x0 > x̂ and xn, for n = 1, 2, . . . , is generated by Newton’s method

xn = xn−1 − f(xn−1)/f
′(xn−1), for n = 1, 2, . . . (7)

then

• x∗ ≤ xn for n = 1, 2, . . . , and

• xn+1 ≤ xn for n = 1, 2, . . .

That is, the xn form a decreasing sequence that is bounded below by x∗.

(c) You can use without proof that a decreasing sequence that is bounded below must
converge. That is, you can conclude from part (b) without proof that xn → y∗ as
n → ∞ and that x∗ ≤ y∗.

Show that x∗ = y∗.

The results above show that, if you start Newton’s method with an initial guess x0 > x̂,
then the Newton iterates xn → x∗ as n → ∞, where x∗ is the unique root of f(x) that
is greater than x̂.

Similarly, you can show that, if you start Newton’s method with an initial guess x0 < x̂,
then the Newton iterates xn → x∗ as n → ∞, where x∗ is the unique root of f(x) that
is less than x̂. (You don’t have to proof this result; I just stated it for completeness.)

The only small problem is that, if you start Newton’s method with an initial guess
x0 = x̂, then there is a divide-by-zero in Newton’s method (7) for n = 1. However,
if this divide-by-zero problem occurs, just choose another x0 and the divide-by-zero
problem cannot occur with this new initial guess x0. Hence, Newton’s method will
converge to either x∗, if x0 > x̂, or to x∗, if x0 < x̂.
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5. [10 marks: 5 marks for each part]

Suppose you are given the data

t1 = −1 t2 = 0 t3 = 1
y1 = 1 y2 = 0 y3 = 1

and you want to find a polynomial p(t) of degree 2 or less that satisfies

p(ti) = yi for i = 1, 2, 3.

(a) Use the monomial basis approach to find the polynomial p(t) in the form

p(t) = c1 + c2t+ c3t
2 (8)

What are the values of the coefficients c1, c2, c3?

(b) Use the Lagrange basis approach to find the polynomial p(t) in the form

p(t) = l1(t)y1 + l2(t)y2 + l3(t)y3 (9)

where the li(t), for i = 1, 2, 3, are the Lagrange basis functions.

Show that the polynomial p(t) written in the monomial basis form (8) is the same
as the polynomial p(t) written in the Lagrange basis form (9).

Total Marks = 60

Total Pages = 10

Have a Happy Holiday
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